x ಪರಿಹರಿಸಿ
x = \frac{2 \sqrt{354} + 36}{5} \approx 14.725955089
x=\frac{36-2\sqrt{354}}{5}\approx -0.325955089
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
16.4x+4.8=x^{2}+2x
16.4x ಪಡೆದುಕೊಳ್ಳಲು 14x ಮತ್ತು 2.4x ಕೂಡಿಸಿ.
16.4x+4.8-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
16.4x+4.8-x^{2}-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
14.4x+4.8-x^{2}=0
14.4x ಪಡೆದುಕೊಳ್ಳಲು 16.4x ಮತ್ತು -2x ಕೂಡಿಸಿ.
-x^{2}+14.4x+4.8=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-14.4±\sqrt{14.4^{2}-4\left(-1\right)\times 4.8}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 14.4 ಮತ್ತು c ಗೆ 4.8 ಬದಲಿಸಿ.
x=\frac{-14.4±\sqrt{207.36-4\left(-1\right)\times 4.8}}{2\left(-1\right)}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ 14.4 ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-14.4±\sqrt{207.36+4\times 4.8}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14.4±\sqrt{207.36+19.2}}{2\left(-1\right)}
4.8 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14.4±\sqrt{226.56}}{2\left(-1\right)}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ 19.2 ಗೆ 207.36 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-14.4±\frac{4\sqrt{354}}{5}}{2\left(-1\right)}
226.56 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-14.4±\frac{4\sqrt{354}}{5}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{354}-72}{-2\times 5}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14.4±\frac{4\sqrt{354}}{5}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{4\sqrt{354}}{5} ಗೆ -14.4 ಸೇರಿಸಿ.
x=\frac{36-2\sqrt{354}}{5}
-2 ದಿಂದ \frac{-72+4\sqrt{354}}{5} ಭಾಗಿಸಿ.
x=\frac{-4\sqrt{354}-72}{-2\times 5}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14.4±\frac{4\sqrt{354}}{5}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -14.4 ದಿಂದ \frac{4\sqrt{354}}{5} ಕಳೆಯಿರಿ.
x=\frac{2\sqrt{354}+36}{5}
-2 ದಿಂದ \frac{-72-4\sqrt{354}}{5} ಭಾಗಿಸಿ.
x=\frac{36-2\sqrt{354}}{5} x=\frac{2\sqrt{354}+36}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
16.4x+4.8=x^{2}+2x
16.4x ಪಡೆದುಕೊಳ್ಳಲು 14x ಮತ್ತು 2.4x ಕೂಡಿಸಿ.
16.4x+4.8-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
16.4x+4.8-x^{2}-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
14.4x+4.8-x^{2}=0
14.4x ಪಡೆದುಕೊಳ್ಳಲು 16.4x ಮತ್ತು -2x ಕೂಡಿಸಿ.
14.4x-x^{2}=-4.8
ಎರಡೂ ಕಡೆಗಳಿಂದ 4.8 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-x^{2}+14.4x=-4.8
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+14.4x}{-1}=-\frac{4.8}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{14.4}{-1}x=-\frac{4.8}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-14.4x=-\frac{4.8}{-1}
-1 ದಿಂದ 14.4 ಭಾಗಿಸಿ.
x^{2}-14.4x=4.8
-1 ದಿಂದ -4.8 ಭಾಗಿಸಿ.
x^{2}-14.4x+\left(-7.2\right)^{2}=4.8+\left(-7.2\right)^{2}
-7.2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -14.4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -7.2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-14.4x+51.84=4.8+51.84
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -7.2 ವರ್ಗಗೊಳಿಸಿ.
x^{2}-14.4x+51.84=56.64
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ 51.84 ಗೆ 4.8 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-7.2\right)^{2}=56.64
ಅಪವರ್ತನ x^{2}-14.4x+51.84. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-7.2\right)^{2}}=\sqrt{56.64}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-7.2=\frac{2\sqrt{354}}{5} x-7.2=-\frac{2\sqrt{354}}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2\sqrt{354}+36}{5} x=\frac{36-2\sqrt{354}}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7.2 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}