ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
h ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(11h-2\right)\left(11h+2\right)=0
121h^{2}-4 ಪರಿಗಣಿಸಿ. \left(11h\right)^{2}-2^{2} ನ ಹಾಗೆ 121h^{2}-4 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಚೌಕಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=\frac{2}{11} h=-\frac{2}{11}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 11h-2=0 ಮತ್ತು 11h+2=0 ಪರಿಹರಿಸಿ.
121h^{2}=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
h^{2}=\frac{4}{121}
121 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
h=\frac{2}{11} h=-\frac{2}{11}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
121h^{2}-4=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳು, x^{2} ಪದದ ಜೊತೆಗೆ ಆದರೆ ಯಾವುದೇ x ಪದವಿಲ್ಲ, ಒಮ್ಮೆ ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಅವುಗಳನ್ನು ಇರಿಸಿದರೆ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ವರ್ಗ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಇನ್ನೂ ಪರಿಹರಿಸಬಹುದು: ax^{2}+bx+c=0.
h=\frac{0±\sqrt{0^{2}-4\times 121\left(-4\right)}}{2\times 121}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 121, b ಗೆ 0 ಮತ್ತು c ಗೆ -4 ಬದಲಿಸಿ.
h=\frac{0±\sqrt{-4\times 121\left(-4\right)}}{2\times 121}
ವರ್ಗ 0.
h=\frac{0±\sqrt{-484\left(-4\right)}}{2\times 121}
121 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
h=\frac{0±\sqrt{1936}}{2\times 121}
-4 ಅನ್ನು -484 ಬಾರಿ ಗುಣಿಸಿ.
h=\frac{0±44}{2\times 121}
1936 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
h=\frac{0±44}{242}
121 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
h=\frac{2}{11}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{0±44}{242} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 22 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{44}{242} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
h=-\frac{2}{11}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{0±44}{242} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 22 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-44}{242} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
h=\frac{2}{11} h=-\frac{2}{11}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.