ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

12x^{2}+68x+38=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-68±\sqrt{68^{2}-4\times 12\times 38}}{2\times 12}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 12, b ಗೆ 68 ಮತ್ತು c ಗೆ 38 ಬದಲಿಸಿ.
x=\frac{-68±\sqrt{4624-4\times 12\times 38}}{2\times 12}
ವರ್ಗ 68.
x=\frac{-68±\sqrt{4624-48\times 38}}{2\times 12}
12 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-68±\sqrt{4624-1824}}{2\times 12}
38 ಅನ್ನು -48 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-68±\sqrt{2800}}{2\times 12}
-1824 ಗೆ 4624 ಸೇರಿಸಿ.
x=\frac{-68±20\sqrt{7}}{2\times 12}
2800 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-68±20\sqrt{7}}{24}
12 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{20\sqrt{7}-68}{24}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-68±20\sqrt{7}}{24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 20\sqrt{7} ಗೆ -68 ಸೇರಿಸಿ.
x=\frac{5\sqrt{7}-17}{6}
24 ದಿಂದ -68+20\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{-20\sqrt{7}-68}{24}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-68±20\sqrt{7}}{24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -68 ದಿಂದ 20\sqrt{7} ಕಳೆಯಿರಿ.
x=\frac{-5\sqrt{7}-17}{6}
24 ದಿಂದ -68-20\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{5\sqrt{7}-17}{6} x=\frac{-5\sqrt{7}-17}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
12x^{2}+68x+38=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
12x^{2}+68x+38-38=-38
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 38 ಕಳೆಯಿರಿ.
12x^{2}+68x=-38
38 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{12x^{2}+68x}{12}=-\frac{38}{12}
12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{68}{12}x=-\frac{38}{12}
12 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 12 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{17}{3}x=-\frac{38}{12}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{68}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{17}{3}x=-\frac{19}{6}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-38}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{17}{3}x+\left(\frac{17}{6}\right)^{2}=-\frac{19}{6}+\left(\frac{17}{6}\right)^{2}
\frac{17}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{17}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{17}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{17}{3}x+\frac{289}{36}=-\frac{19}{6}+\frac{289}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{17}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{17}{3}x+\frac{289}{36}=\frac{175}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{289}{36} ಗೆ -\frac{19}{6} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{17}{6}\right)^{2}=\frac{175}{36}
ಅಪವರ್ತನ x^{2}+\frac{17}{3}x+\frac{289}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{17}{6}\right)^{2}}=\sqrt{\frac{175}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{17}{6}=\frac{5\sqrt{7}}{6} x+\frac{17}{6}=-\frac{5\sqrt{7}}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{5\sqrt{7}-17}{6} x=\frac{-5\sqrt{7}-17}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{17}{6} ಕಳೆಯಿರಿ.