ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
b ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

12b^{2}-36b=17
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
12b^{2}-36b-17=17-17
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 17 ಕಳೆಯಿರಿ.
12b^{2}-36b-17=0
17 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
b=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 12\left(-17\right)}}{2\times 12}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 12, b ಗೆ -36 ಮತ್ತು c ಗೆ -17 ಬದಲಿಸಿ.
b=\frac{-\left(-36\right)±\sqrt{1296-4\times 12\left(-17\right)}}{2\times 12}
ವರ್ಗ -36.
b=\frac{-\left(-36\right)±\sqrt{1296-48\left(-17\right)}}{2\times 12}
12 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-36\right)±\sqrt{1296+816}}{2\times 12}
-17 ಅನ್ನು -48 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-36\right)±\sqrt{2112}}{2\times 12}
816 ಗೆ 1296 ಸೇರಿಸಿ.
b=\frac{-\left(-36\right)±8\sqrt{33}}{2\times 12}
2112 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
b=\frac{36±8\sqrt{33}}{2\times 12}
-36 ನ ವಿಲೋಮವು 36 ಆಗಿದೆ.
b=\frac{36±8\sqrt{33}}{24}
12 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{8\sqrt{33}+36}{24}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ b=\frac{36±8\sqrt{33}}{24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8\sqrt{33} ಗೆ 36 ಸೇರಿಸಿ.
b=\frac{\sqrt{33}}{3}+\frac{3}{2}
24 ದಿಂದ 36+8\sqrt{33} ಭಾಗಿಸಿ.
b=\frac{36-8\sqrt{33}}{24}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ b=\frac{36±8\sqrt{33}}{24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 36 ದಿಂದ 8\sqrt{33} ಕಳೆಯಿರಿ.
b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
24 ದಿಂದ 36-8\sqrt{33} ಭಾಗಿಸಿ.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
12b^{2}-36b=17
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{12b^{2}-36b}{12}=\frac{17}{12}
12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
b^{2}+\left(-\frac{36}{12}\right)b=\frac{17}{12}
12 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 12 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
b^{2}-3b=\frac{17}{12}
12 ದಿಂದ -36 ಭಾಗಿಸಿ.
b^{2}-3b+\left(-\frac{3}{2}\right)^{2}=\frac{17}{12}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
b^{2}-3b+\frac{9}{4}=\frac{17}{12}+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
b^{2}-3b+\frac{9}{4}=\frac{11}{3}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{4} ಗೆ \frac{17}{12} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(b-\frac{3}{2}\right)^{2}=\frac{11}{3}
ಅಪವರ್ತನ b^{2}-3b+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(b-\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{3}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
b-\frac{3}{2}=\frac{\sqrt{33}}{3} b-\frac{3}{2}=-\frac{\sqrt{33}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.