ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

12x^{2}-144x+9>0
2 ನ ಘಾತಕ್ಕೆ 12 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 144 ಪಡೆಯಿರಿ.
12x^{2}-144x+9=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 12\times 9}}{2\times 12}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 12 ಅನ್ನು,b ಗೆ -144 ಅನ್ನು ಮತ್ತು c ಗೆ 9 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{144±12\sqrt{141}}{24}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{\sqrt{141}}{2}+6 x=-\frac{\sqrt{141}}{2}+6
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{144±12\sqrt{141}}{24} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
12\left(x-\left(\frac{\sqrt{141}}{2}+6\right)\right)\left(x-\left(-\frac{\sqrt{141}}{2}+6\right)\right)>0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-\left(\frac{\sqrt{141}}{2}+6\right)<0 x-\left(-\frac{\sqrt{141}}{2}+6\right)<0
ಧನಾತ್ಮಕ, ಎಂದು ಉತ್ಪನ್ನಕ್ಕಾಗಿ x-\left(\frac{\sqrt{141}}{2}+6\right) ಮತ್ತು x-\left(-\frac{\sqrt{141}}{2}+6\right) ಋಣಾತ್ಮಕ ಅಥವಾ ಎರಡೂ ಧನಾತ್ಮಕ ಹೊಂದಿಲ್ಲ. x-\left(\frac{\sqrt{141}}{2}+6\right) ಮತ್ತು x-\left(-\frac{\sqrt{141}}{2}+6\right) ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x<-\frac{\sqrt{141}}{2}+6
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x<-\frac{\sqrt{141}}{2}+6 ಆಗಿದೆ.
x-\left(-\frac{\sqrt{141}}{2}+6\right)>0 x-\left(\frac{\sqrt{141}}{2}+6\right)>0
x-\left(\frac{\sqrt{141}}{2}+6\right) ಮತ್ತು x-\left(-\frac{\sqrt{141}}{2}+6\right) ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x>\frac{\sqrt{141}}{2}+6
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x>\frac{\sqrt{141}}{2}+6 ಆಗಿದೆ.
x<-\frac{\sqrt{141}}{2}+6\text{; }x>\frac{\sqrt{141}}{2}+6
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.