b ಪರಿಹರಿಸಿ
b=-15
b=5
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-4b^{2}-40b+400=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-4b^{2}-40b+400-100=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 100 ಕಳೆಯಿರಿ.
-4b^{2}-40b+300=0
300 ಪಡೆದುಕೊಳ್ಳಲು 400 ದಿಂದ 100 ಕಳೆಯಿರಿ.
-b^{2}-10b+75=0
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a+b=-10 ab=-75=-75
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -b^{2}+ab+bb+75 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-75 3,-25 5,-15
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -75 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-75=-74 3-25=-22 5-15=-10
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=5 b=-15
ಪರಿಹಾರವು -10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-b^{2}+5b\right)+\left(-15b+75\right)
\left(-b^{2}+5b\right)+\left(-15b+75\right) ನ ಹಾಗೆ -b^{2}-10b+75 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
b\left(-b+5\right)+15\left(-b+5\right)
ಮೊದಲನೆಯದರಲ್ಲಿ b ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 15 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-b+5\right)\left(b+15\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -b+5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
b=5 b=-15
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -b+5=0 ಮತ್ತು b+15=0 ಪರಿಹರಿಸಿ.
-4b^{2}-40b+400=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-4b^{2}-40b+400-100=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 100 ಕಳೆಯಿರಿ.
-4b^{2}-40b+300=0
300 ಪಡೆದುಕೊಳ್ಳಲು 400 ದಿಂದ 100 ಕಳೆಯಿರಿ.
b=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-4\right)\times 300}}{2\left(-4\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -4, b ಗೆ -40 ಮತ್ತು c ಗೆ 300 ಬದಲಿಸಿ.
b=\frac{-\left(-40\right)±\sqrt{1600-4\left(-4\right)\times 300}}{2\left(-4\right)}
ವರ್ಗ -40.
b=\frac{-\left(-40\right)±\sqrt{1600+16\times 300}}{2\left(-4\right)}
-4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-40\right)±\sqrt{1600+4800}}{2\left(-4\right)}
300 ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-40\right)±\sqrt{6400}}{2\left(-4\right)}
4800 ಗೆ 1600 ಸೇರಿಸಿ.
b=\frac{-\left(-40\right)±80}{2\left(-4\right)}
6400 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
b=\frac{40±80}{2\left(-4\right)}
-40 ನ ವಿಲೋಮವು 40 ಆಗಿದೆ.
b=\frac{40±80}{-8}
-4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{120}{-8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ b=\frac{40±80}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 80 ಗೆ 40 ಸೇರಿಸಿ.
b=-15
-8 ದಿಂದ 120 ಭಾಗಿಸಿ.
b=-\frac{40}{-8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ b=\frac{40±80}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 40 ದಿಂದ 80 ಕಳೆಯಿರಿ.
b=5
-8 ದಿಂದ -40 ಭಾಗಿಸಿ.
b=-15 b=5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-4b^{2}-40b+400=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-4b^{2}-40b=100-400
ಎರಡೂ ಕಡೆಗಳಿಂದ 400 ಕಳೆಯಿರಿ.
-4b^{2}-40b=-300
-300 ಪಡೆದುಕೊಳ್ಳಲು 100 ದಿಂದ 400 ಕಳೆಯಿರಿ.
\frac{-4b^{2}-40b}{-4}=-\frac{300}{-4}
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
b^{2}+\left(-\frac{40}{-4}\right)b=-\frac{300}{-4}
-4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
b^{2}+10b=-\frac{300}{-4}
-4 ದಿಂದ -40 ಭಾಗಿಸಿ.
b^{2}+10b=75
-4 ದಿಂದ -300 ಭಾಗಿಸಿ.
b^{2}+10b+5^{2}=75+5^{2}
5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
b^{2}+10b+25=75+25
ವರ್ಗ 5.
b^{2}+10b+25=100
25 ಗೆ 75 ಸೇರಿಸಿ.
\left(b+5\right)^{2}=100
ಅಪವರ್ತನ b^{2}+10b+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(b+5\right)^{2}}=\sqrt{100}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
b+5=10 b+5=-10
ಸರಳೀಕೃತಗೊಳಿಸಿ.
b=5 b=-15
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}