ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5\left(2x^{2}-7x+6\right)
5 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-7 ab=2\times 6=12
2x^{2}-7x+6 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 2x^{2}+ax+bx+6 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-12 -2,-6 -3,-4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-12=-13 -2-6=-8 -3-4=-7
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-4 b=-3
ಪರಿಹಾರವು -7 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2x^{2}-4x\right)+\left(-3x+6\right)
\left(2x^{2}-4x\right)+\left(-3x+6\right) ನ ಹಾಗೆ 2x^{2}-7x+6 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2x\left(x-2\right)-3\left(x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)\left(2x-3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
5\left(x-2\right)\left(2x-3\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
10x^{2}-35x+30=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 10\times 30}}{2\times 10}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 10\times 30}}{2\times 10}
ವರ್ಗ -35.
x=\frac{-\left(-35\right)±\sqrt{1225-40\times 30}}{2\times 10}
10 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-35\right)±\sqrt{1225-1200}}{2\times 10}
30 ಅನ್ನು -40 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-35\right)±\sqrt{25}}{2\times 10}
-1200 ಗೆ 1225 ಸೇರಿಸಿ.
x=\frac{-\left(-35\right)±5}{2\times 10}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{35±5}{2\times 10}
-35 ನ ವಿಲೋಮವು 35 ಆಗಿದೆ.
x=\frac{35±5}{20}
10 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{40}{20}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{35±5}{20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 35 ಸೇರಿಸಿ.
x=2
20 ದಿಂದ 40 ಭಾಗಿಸಿ.
x=\frac{30}{20}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{35±5}{20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 35 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=\frac{3}{2}
10 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{30}{20} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
10x^{2}-35x+30=10\left(x-2\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 2 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{3}{2} ನ್ನು ಬಳಸಿ.
10x^{2}-35x+30=10\left(x-2\right)\times \frac{2x-3}{2}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ x ದಿಂದ \frac{3}{2} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
10x^{2}-35x+30=5\left(x-2\right)\left(2x-3\right)
10 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.