ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

1.5\times 10^{-5}\left(-x+1\right)=x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮನಾಗಿರಬಾರದು. -x+1 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
\frac{3}{200000}\left(-x+1\right)=x^{2}
\frac{3}{200000} ಪಡೆದುಕೊಳ್ಳಲು 1.5 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
-x+1 ದಿಂದ \frac{3}{200000} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-x^{2}-\frac{3}{200000}x+\frac{3}{200000}=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\left(-\frac{3}{200000}\right)^{2}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -\frac{3}{200000} ಮತ್ತು c ಗೆ \frac{3}{200000} ಬದಲಿಸಿ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{200000} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+4\times \frac{3}{200000}}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+\frac{3}{50000}}}{2\left(-1\right)}
\frac{3}{200000} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{2400009}{40000000000}}}{2\left(-1\right)}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{3}{50000} ಗೆ \frac{9}{40000000000} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\left(-\frac{3}{200000}\right)±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
\frac{2400009}{40000000000} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
-\frac{3}{200000} ನ ವಿಲೋಮವು \frac{3}{200000} ಆಗಿದೆ.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{2400009}+3}{-2\times 200000}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{2400009}}{200000} ಗೆ \frac{3}{200000} ಸೇರಿಸಿ.
x=\frac{-\sqrt{2400009}-3}{400000}
-2 ದಿಂದ \frac{3+\sqrt{2400009}}{200000} ಭಾಗಿಸಿ.
x=\frac{3-\sqrt{2400009}}{-2\times 200000}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{3}{200000} ದಿಂದ \frac{\sqrt{2400009}}{200000} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{2400009}-3}{400000}
-2 ದಿಂದ \frac{3-\sqrt{2400009}}{200000} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{2400009}-3}{400000} x=\frac{\sqrt{2400009}-3}{400000}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮನಾಗಿರಬಾರದು. -x+1 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
\frac{3}{200000}\left(-x+1\right)=x^{2}
\frac{3}{200000} ಪಡೆದುಕೊಳ್ಳಲು 1.5 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
-x+1 ದಿಂದ \frac{3}{200000} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-\frac{3}{200000}x-x^{2}=-\frac{3}{200000}
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{200000} ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-x^{2}-\frac{3}{200000}x=-\frac{3}{200000}
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-\frac{3}{200000}x}{-1}=-\frac{\frac{3}{200000}}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{\frac{3}{200000}}{-1}\right)x=-\frac{\frac{3}{200000}}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{200000}x=-\frac{\frac{3}{200000}}{-1}
-1 ದಿಂದ -\frac{3}{200000} ಭಾಗಿಸಿ.
x^{2}+\frac{3}{200000}x=\frac{3}{200000}
-1 ದಿಂದ -\frac{3}{200000} ಭಾಗಿಸಿ.
x^{2}+\frac{3}{200000}x+\left(\frac{3}{400000}\right)^{2}=\frac{3}{200000}+\left(\frac{3}{400000}\right)^{2}
\frac{3}{400000} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{200000} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{400000} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{3}{200000}+\frac{9}{160000000000}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{400000} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{2400009}{160000000000}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{160000000000} ಗೆ \frac{3}{200000} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{400000}\right)^{2}=\frac{2400009}{160000000000}
ಅಪವರ್ತನ x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{400000}\right)^{2}}=\sqrt{\frac{2400009}{160000000000}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{400000}=\frac{\sqrt{2400009}}{400000} x+\frac{3}{400000}=-\frac{\sqrt{2400009}}{400000}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{2400009}-3}{400000} x=\frac{-\sqrt{2400009}-3}{400000}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{400000} ಕಳೆಯಿರಿ.