x ಪರಿಹರಿಸಿ
x=\frac{\sqrt{66}}{2}+7\approx 11.062019202
x=-\frac{\sqrt{66}}{2}+7\approx 2.937980798
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
1-2\left(x-3\right)\left(x-11\right)=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಗುಣಿಸಿ.
1+\left(-2x+6\right)\left(x-11\right)=0
x-3 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
1-2x^{2}+28x-66=0
x-11 ರಿಂದು -2x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
-65-2x^{2}+28x=0
-65 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 66 ಕಳೆಯಿರಿ.
-2x^{2}+28x-65=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-28±\sqrt{28^{2}-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 28 ಮತ್ತು c ಗೆ -65 ಬದಲಿಸಿ.
x=\frac{-28±\sqrt{784-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
ವರ್ಗ 28.
x=\frac{-28±\sqrt{784+8\left(-65\right)}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-28±\sqrt{784-520}}{2\left(-2\right)}
-65 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-28±\sqrt{264}}{2\left(-2\right)}
-520 ಗೆ 784 ಸೇರಿಸಿ.
x=\frac{-28±2\sqrt{66}}{2\left(-2\right)}
264 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-28±2\sqrt{66}}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{66}-28}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-28±2\sqrt{66}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{66} ಗೆ -28 ಸೇರಿಸಿ.
x=-\frac{\sqrt{66}}{2}+7
-4 ದಿಂದ -28+2\sqrt{66} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{66}-28}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-28±2\sqrt{66}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -28 ದಿಂದ 2\sqrt{66} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{66}}{2}+7
-4 ದಿಂದ -28-2\sqrt{66} ಭಾಗಿಸಿ.
x=-\frac{\sqrt{66}}{2}+7 x=\frac{\sqrt{66}}{2}+7
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
1-2\left(x-3\right)\left(x-11\right)=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಗುಣಿಸಿ.
1+\left(-2x+6\right)\left(x-11\right)=0
x-3 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
1-2x^{2}+28x-66=0
x-11 ರಿಂದು -2x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
-65-2x^{2}+28x=0
-65 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 66 ಕಳೆಯಿರಿ.
-2x^{2}+28x=65
ಎರಡೂ ಬದಿಗಳಿಗೆ 65 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{-2x^{2}+28x}{-2}=\frac{65}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{28}{-2}x=\frac{65}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-14x=\frac{65}{-2}
-2 ದಿಂದ 28 ಭಾಗಿಸಿ.
x^{2}-14x=-\frac{65}{2}
-2 ದಿಂದ 65 ಭಾಗಿಸಿ.
x^{2}-14x+\left(-7\right)^{2}=-\frac{65}{2}+\left(-7\right)^{2}
-7 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -14 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -7 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-14x+49=-\frac{65}{2}+49
ವರ್ಗ -7.
x^{2}-14x+49=\frac{33}{2}
49 ಗೆ -\frac{65}{2} ಸೇರಿಸಿ.
\left(x-7\right)^{2}=\frac{33}{2}
ಅಪವರ್ತನ x^{2}-14x+49. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{33}{2}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-7=\frac{\sqrt{66}}{2} x-7=-\frac{\sqrt{66}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{66}}{2}+7 x=-\frac{\sqrt{66}}{2}+7
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}