x ಪರಿಹರಿಸಿ
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right), x+1,x^{2}-1,1-x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
\left(x-1\right)\left(x+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
2 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-1-2x+2-4=-\left(1+x\right)x
2x-2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
x^{2}+1-2x-4=-\left(1+x\right)x
1 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಸೇರಿಸಿ.
x^{2}-3-2x=-\left(1+x\right)x
-3 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x^{2}-3-2x=\left(-1-x\right)x
1+x ದಿಂದ -1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x=-x-x^{2}
x ದಿಂದ -1-x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x+x=-x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
x^{2}-3-x=-x^{2}
-x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು x ಕೂಡಿಸಿ.
x^{2}-3-x+x^{2}=0
ಎರಡೂ ಬದಿಗಳಿಗೆ x^{2} ಸೇರಿಸಿ.
2x^{2}-3-x=0
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-x-3=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=-1 ab=2\left(-3\right)=-6
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 2x^{2}+ax+bx-3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-6 2,-3
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -6 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-6=-5 2-3=-1
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=2
ಪರಿಹಾರವು -1 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2x^{2}-3x\right)+\left(2x-3\right)
\left(2x^{2}-3x\right)+\left(2x-3\right) ನ ಹಾಗೆ 2x^{2}-x-3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(2x-3\right)+2x-3
2x^{2}-3x ರಲ್ಲಿ x ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-3\right)\left(x+1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2x-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{3}{2} x=-1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 2x-3=0 ಮತ್ತು x+1=0 ಪರಿಹರಿಸಿ.
x=\frac{3}{2}
x ವೇರಿಯೇಬಲ್ -1 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right), x+1,x^{2}-1,1-x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
\left(x-1\right)\left(x+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
2 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-1-2x+2-4=-\left(1+x\right)x
2x-2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
x^{2}+1-2x-4=-\left(1+x\right)x
1 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಸೇರಿಸಿ.
x^{2}-3-2x=-\left(1+x\right)x
-3 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x^{2}-3-2x=\left(-1-x\right)x
1+x ದಿಂದ -1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x=-x-x^{2}
x ದಿಂದ -1-x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x+x=-x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
x^{2}-3-x=-x^{2}
-x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು x ಕೂಡಿಸಿ.
x^{2}-3-x+x^{2}=0
ಎರಡೂ ಬದಿಗಳಿಗೆ x^{2} ಸೇರಿಸಿ.
2x^{2}-3-x=0
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -1 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
-3 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
24 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\left(-1\right)±5}{2\times 2}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{1±5}{2\times 2}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
x=\frac{1±5}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±5}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{3}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{4}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±5}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=-1
4 ದಿಂದ -4 ಭಾಗಿಸಿ.
x=\frac{3}{2} x=-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=\frac{3}{2}
x ವೇರಿಯೇಬಲ್ -1 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right), x+1,x^{2}-1,1-x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
\left(x-1\right)\left(x+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
2 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-1-2x+2-4=-\left(1+x\right)x
2x-2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
x^{2}+1-2x-4=-\left(1+x\right)x
1 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಸೇರಿಸಿ.
x^{2}-3-2x=-\left(1+x\right)x
-3 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x^{2}-3-2x=\left(-1-x\right)x
1+x ದಿಂದ -1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x=-x-x^{2}
x ದಿಂದ -1-x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3-2x+x=-x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
x^{2}-3-x=-x^{2}
-x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು x ಕೂಡಿಸಿ.
x^{2}-3-x+x^{2}=0
ಎರಡೂ ಬದಿಗಳಿಗೆ x^{2} ಸೇರಿಸಿ.
2x^{2}-3-x=0
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-x=3
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{2x^{2}-x}{2}=\frac{3}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x=\frac{3}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{16} ಗೆ \frac{3}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
ಅಪವರ್ತನ x^{2}-\frac{1}{2}x+\frac{1}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3}{2} x=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{4} ಸೇರಿಸಿ.
x=\frac{3}{2}
x ವೇರಿಯೇಬಲ್ -1 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}