ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
4x^{2}-20x+25 ದಿಂದ 1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 9 ಗುಣಿಸಿ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0=0
ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಗುಣಿಸಿದರೆ ಶೂನ್ಯ ಬರುತ್ತದೆ.
4x^{2}-20x+25=0
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
a+b=-20 ab=4\times 25=100
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 4x^{2}+ax+bx+25 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 100 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-10 b=-10
ಪರಿಹಾರವು -20 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(4x^{2}-10x\right)+\left(-10x+25\right)
\left(4x^{2}-10x\right)+\left(-10x+25\right) ನ ಹಾಗೆ 4x^{2}-20x+25 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2x\left(2x-5\right)-5\left(2x-5\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-5\right)\left(2x-5\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2x-5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-5\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
x=\frac{5}{2}
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, 2x-5=0 ಪರಿಹರಿಸಿ.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
4x^{2}-20x+25 ದಿಂದ 1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 9 ಗುಣಿಸಿ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0=0
ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಗುಣಿಸಿದರೆ ಶೂನ್ಯ ಬರುತ್ತದೆ.
4x^{2}-20x+25=0
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 25}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ -20 ಮತ್ತು c ಗೆ 25 ಬದಲಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 25}}{2\times 4}
ವರ್ಗ -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 25}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 4}
25 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{0}}{2\times 4}
-400 ಗೆ 400 ಸೇರಿಸಿ.
x=-\frac{-20}{2\times 4}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{20}{2\times 4}
-20 ನ ವಿಲೋಮವು 20 ಆಗಿದೆ.
x=\frac{20}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{5}{2}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{20}{8} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
4x^{2}-20x+25 ದಿಂದ 1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 9 ಗುಣಿಸಿ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}-20x+25-0=0
ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಗುಣಿಸಿದರೆ ಶೂನ್ಯ ಬರುತ್ತದೆ.
4x^{2}-20x+25=0+0
ಎರಡೂ ಬದಿಗಳಿಗೆ 0 ಸೇರಿಸಿ.
4x^{2}-20x+25=0
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 0 ಸೇರಿಸಿ.
4x^{2}-20x=-25
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{4x^{2}-20x}{4}=-\frac{25}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{25}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-5x=-\frac{25}{4}
4 ದಿಂದ -20 ಭಾಗಿಸಿ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-5x+\frac{25}{4}=\frac{-25+25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-5x+\frac{25}{4}=0
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{4} ಗೆ -\frac{25}{4} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{5}{2}\right)^{2}=0
ಅಪವರ್ತನ x^{2}-5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{2}=0 x-\frac{5}{2}=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{5}{2} x=\frac{5}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.
x=\frac{5}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.