ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

0.6x^{2}-0.2x+0.3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-0.2\right)±\sqrt{\left(-0.2\right)^{2}-4\times 0.6\times 0.3}}{2\times 0.6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 0.6, b ಗೆ -0.2 ಮತ್ತು c ಗೆ 0.3 ಬದಲಿಸಿ.
x=\frac{-\left(-0.2\right)±\sqrt{0.04-4\times 0.6\times 0.3}}{2\times 0.6}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -0.2 ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\left(-0.2\right)±\sqrt{0.04-2.4\times 0.3}}{2\times 0.6}
0.6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-0.2\right)±\sqrt{\frac{1-18}{25}}}{2\times 0.6}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ 0.3 ಅನ್ನು -2.4 ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\left(-0.2\right)±\sqrt{-0.68}}{2\times 0.6}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -0.72 ಗೆ 0.04 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\left(-0.2\right)±\frac{\sqrt{17}i}{5}}{2\times 0.6}
-0.68 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0.2±\frac{\sqrt{17}i}{5}}{2\times 0.6}
-0.2 ನ ವಿಲೋಮವು 0.2 ಆಗಿದೆ.
x=\frac{0.2±\frac{\sqrt{17}i}{5}}{1.2}
0.6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{1+\sqrt{17}i}{1.2\times 5}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0.2±\frac{\sqrt{17}i}{5}}{1.2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{i\sqrt{17}}{5} ಗೆ 0.2 ಸೇರಿಸಿ.
x=\frac{1+\sqrt{17}i}{6}
1.2 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{1+i\sqrt{17}}{5} ಗುಣಿಸುವ ಮೂಲಕ 1.2 ದಿಂದ \frac{1+i\sqrt{17}}{5} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{17}i+1}{1.2\times 5}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0.2±\frac{\sqrt{17}i}{5}}{1.2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 0.2 ದಿಂದ \frac{i\sqrt{17}}{5} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{17}i+1}{6}
1.2 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{1-i\sqrt{17}}{5} ಗುಣಿಸುವ ಮೂಲಕ 1.2 ದಿಂದ \frac{1-i\sqrt{17}}{5} ಭಾಗಿಸಿ.
x=\frac{1+\sqrt{17}i}{6} x=\frac{-\sqrt{17}i+1}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
0.6x^{2}-0.2x+0.3=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
0.6x^{2}-0.2x+0.3-0.3=-0.3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 0.3 ಕಳೆಯಿರಿ.
0.6x^{2}-0.2x=-0.3
0.3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{0.6x^{2}-0.2x}{0.6}=-\frac{0.3}{0.6}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, 0.6 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{0.2}{0.6}\right)x=-\frac{0.3}{0.6}
0.6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 0.6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{3}x=-\frac{0.3}{0.6}
0.6 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -0.2 ಗುಣಿಸುವ ಮೂಲಕ 0.6 ದಿಂದ -0.2 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{3}x=-0.5
0.6 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -0.3 ಗುಣಿಸುವ ಮೂಲಕ 0.6 ದಿಂದ -0.3 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-0.5+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-0.5+\frac{1}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{17}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{36} ಗೆ -0.5 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1}{6}\right)^{2}=-\frac{17}{36}
ಅಪವರ್ತನ x^{2}-\frac{1}{3}x+\frac{1}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{17}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{6}=\frac{\sqrt{17}i}{6} x-\frac{1}{6}=-\frac{\sqrt{17}i}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{1+\sqrt{17}i}{6} x=\frac{-\sqrt{17}i+1}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{6} ಸೇರಿಸಿ.