ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

y^{2}+6y-14=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 6 ಮತ್ತು c ಗೆ -14 ಬದಲಿಸಿ.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
ವರ್ಗ 6.
y=\frac{-6±\sqrt{36+56}}{2}
-14 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-6±\sqrt{92}}{2}
56 ಗೆ 36 ಸೇರಿಸಿ.
y=\frac{-6±2\sqrt{23}}{2}
92 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{2\sqrt{23}-6}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-6±2\sqrt{23}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{23} ಗೆ -6 ಸೇರಿಸಿ.
y=\sqrt{23}-3
2 ದಿಂದ -6+2\sqrt{23} ಭಾಗಿಸಿ.
y=\frac{-2\sqrt{23}-6}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-6±2\sqrt{23}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2\sqrt{23} ಕಳೆಯಿರಿ.
y=-\sqrt{23}-3
2 ದಿಂದ -6-2\sqrt{23} ಭಾಗಿಸಿ.
y=\sqrt{23}-3 y=-\sqrt{23}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y^{2}+6y-14=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
y^{2}+6y=14
ಎರಡೂ ಬದಿಗಳಿಗೆ 14 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
y^{2}+6y+3^{2}=14+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}+6y+9=14+9
ವರ್ಗ 3.
y^{2}+6y+9=23
9 ಗೆ 14 ಸೇರಿಸಿ.
\left(y+3\right)^{2}=23
ಅಪವರ್ತನ y^{2}+6y+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y+3=\sqrt{23} y+3=-\sqrt{23}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=\sqrt{23}-3 y=-\sqrt{23}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
y^{2}+6y-14=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 6 ಮತ್ತು c ಗೆ -14 ಬದಲಿಸಿ.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
ವರ್ಗ 6.
y=\frac{-6±\sqrt{36+56}}{2}
-14 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-6±\sqrt{92}}{2}
56 ಗೆ 36 ಸೇರಿಸಿ.
y=\frac{-6±2\sqrt{23}}{2}
92 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{2\sqrt{23}-6}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-6±2\sqrt{23}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{23} ಗೆ -6 ಸೇರಿಸಿ.
y=\sqrt{23}-3
2 ದಿಂದ -6+2\sqrt{23} ಭಾಗಿಸಿ.
y=\frac{-2\sqrt{23}-6}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-6±2\sqrt{23}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2\sqrt{23} ಕಳೆಯಿರಿ.
y=-\sqrt{23}-3
2 ದಿಂದ -6-2\sqrt{23} ಭಾಗಿಸಿ.
y=\sqrt{23}-3 y=-\sqrt{23}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y^{2}+6y-14=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
y^{2}+6y=14
ಎರಡೂ ಬದಿಗಳಿಗೆ 14 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
y^{2}+6y+3^{2}=14+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}+6y+9=14+9
ವರ್ಗ 3.
y^{2}+6y+9=23
9 ಗೆ 14 ಸೇರಿಸಿ.
\left(y+3\right)^{2}=23
ಅಪವರ್ತನ y^{2}+6y+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y+3=\sqrt{23} y+3=-\sqrt{23}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=\sqrt{23}-3 y=-\sqrt{23}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.