x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=50+50\sqrt{223}i\approx 50+746.659226153i
x=-50\sqrt{223}i+50\approx 50-746.659226153i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-100x+560000=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 560000}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -100 ಮತ್ತು c ಗೆ 560000 ಬದಲಿಸಿ.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 560000}}{2}
ವರ್ಗ -100.
x=\frac{-\left(-100\right)±\sqrt{10000-2240000}}{2}
560000 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-100\right)±\sqrt{-2230000}}{2}
-2240000 ಗೆ 10000 ಸೇರಿಸಿ.
x=\frac{-\left(-100\right)±100\sqrt{223}i}{2}
-2230000 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{100±100\sqrt{223}i}{2}
-100 ನ ವಿಲೋಮವು 100 ಆಗಿದೆ.
x=\frac{100+100\sqrt{223}i}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{100±100\sqrt{223}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 100i\sqrt{223} ಗೆ 100 ಸೇರಿಸಿ.
x=50+50\sqrt{223}i
2 ದಿಂದ 100+100i\sqrt{223} ಭಾಗಿಸಿ.
x=\frac{-100\sqrt{223}i+100}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{100±100\sqrt{223}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 100 ದಿಂದ 100i\sqrt{223} ಕಳೆಯಿರಿ.
x=-50\sqrt{223}i+50
2 ದಿಂದ 100-100i\sqrt{223} ಭಾಗಿಸಿ.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-100x+560000=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}-100x=-560000
ಎರಡೂ ಕಡೆಗಳಿಂದ 560000 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
x^{2}-100x+\left(-50\right)^{2}=-560000+\left(-50\right)^{2}
-50 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -100 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -50 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-100x+2500=-560000+2500
ವರ್ಗ -50.
x^{2}-100x+2500=-557500
2500 ಗೆ -560000 ಸೇರಿಸಿ.
\left(x-50\right)^{2}=-557500
ಅಪವರ್ತನ x^{2}-100x+2500. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-50\right)^{2}}=\sqrt{-557500}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-50=50\sqrt{223}i x-50=-50\sqrt{223}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 50 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}