t ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}\\t=x\text{, }&\text{unconditionally}\\t\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=10\pi n_{1}i\end{matrix}\right.
t ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\t=x\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=t
x=i\times 10\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
x ಪರಿಹರಿಸಿ
x=0
x=t
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
0=xe^{0.2x}-x-te^{0.2x}+t
e^{0.2x}-1 ದಿಂದ x-t ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
xe^{0.2x}-x-te^{0.2x}+t=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-x-te^{0.2x}+t=-xe^{0.2x}
ಎರಡೂ ಕಡೆಗಳಿಂದ xe^{0.2x} ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-te^{0.2x}+t=-xe^{0.2x}+x
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
\left(-e^{0.2x}+1\right)t=-xe^{0.2x}+x
t ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(1-e^{\frac{x}{5}}\right)t=x-xe^{\frac{x}{5}}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(1-e^{\frac{x}{5}}\right)t}{1-e^{\frac{x}{5}}}=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
-e^{0.2x}+1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
-e^{0.2x}+1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -e^{0.2x}+1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t=x
-e^{0.2x}+1 ದಿಂದ -xe^{\frac{x}{5}}+x ಭಾಗಿಸಿ.
0=xe^{0.2x}-x-te^{0.2x}+t
e^{0.2x}-1 ದಿಂದ x-t ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
xe^{0.2x}-x-te^{0.2x}+t=0
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-x-te^{0.2x}+t=-xe^{0.2x}
ಎರಡೂ ಕಡೆಗಳಿಂದ xe^{0.2x} ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-te^{0.2x}+t=-xe^{0.2x}+x
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
\left(-e^{0.2x}+1\right)t=-xe^{0.2x}+x
t ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(1-e^{\frac{x}{5}}\right)t=x-xe^{\frac{x}{5}}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(1-e^{\frac{x}{5}}\right)t}{1-e^{\frac{x}{5}}}=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
-e^{0.2x}+1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
-e^{0.2x}+1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -e^{0.2x}+1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t=x
-e^{0.2x}+1 ದಿಂದ -xe^{\frac{x}{5}}+x ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}