x ಪರಿಹರಿಸಿ
x\in \left(-2,9\right)
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(-3x+27\right)\left(2+x\right)>0
x-9 ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
21x-3x^{2}+54>0
2+x ರಿಂದು -3x+27 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
-21x+3x^{2}-54<0
ಅತ್ಯಧಿ ಘಾತದ ಗುಣಾಕಂವನ್ನು 21x-3x^{2}+54 ಧನಾತ್ಮಕವಾಗಿ ಮಾಡಲು ಅಸಮಾನವಾಗಿರುವುದನ್ನು -1 ರಿಂದ ಗುಣಿಸಿ. -1 ಎಂಬುದು ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಅಸಮಾನತೆಯ ದಿಕ್ಕು ಬದಲಾಗಿದೆ.
-21x+3x^{2}-54=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 3\left(-54\right)}}{2\times 3}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 3 ಅನ್ನು,b ಗೆ -21 ಅನ್ನು ಮತ್ತು c ಗೆ -54 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{21±33}{6}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=9 x=-2
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{21±33}{6} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
3\left(x-9\right)\left(x+2\right)<0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-9>0 x+2<0
ಗುಣಲಬ್ಧವು ಋಣಾತ್ಮಕವಾಗಿರಲು x-9 ಮತ್ತು x+2 ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಲ್ಲಿರಬೇಕು. x-9 ಧನಾತ್ಮಕವಾಗಿರುವ ಮತ್ತು x+2 ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \emptyset
ಇದು ಯಾವುದೇ x ಗೆ ತಪ್ಪಾಗಿರುತ್ತದೆ.
x+2>0 x-9<0
x+2 ಧನಾತ್ಮಕವಾಗಿರುವ ಮತ್ತು x-9 ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \left(-2,9\right)
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x\in \left(-2,9\right) ಆಗಿದೆ.
x\in \left(-2,9\right)
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}