ಅಪವರ್ತನ
-2\left(x-\frac{-\sqrt{33}-5}{4}\right)\left(x-\frac{\sqrt{33}-5}{4}\right)
ಮೌಲ್ಯಮಾಪನ
1-5x-2x^{2}
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Polynomial
-2 { x }^{ 2 } -5x+1
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-2x^{2}-5x+1=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)}}{2\left(-2\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)}}{2\left(-2\right)}
ವರ್ಗ -5.
x=\frac{-\left(-5\right)±\sqrt{25+8}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{33}}{2\left(-2\right)}
8 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{5±\sqrt{33}}{2\left(-2\right)}
-5 ನ ವಿಲೋಮವು 5 ಆಗಿದೆ.
x=\frac{5±\sqrt{33}}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{33}+5}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±\sqrt{33}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{33} ಗೆ 5 ಸೇರಿಸಿ.
x=\frac{-\sqrt{33}-5}{4}
-4 ದಿಂದ 5+\sqrt{33} ಭಾಗಿಸಿ.
x=\frac{5-\sqrt{33}}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±\sqrt{33}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ದಿಂದ \sqrt{33} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{33}-5}{4}
-4 ದಿಂದ 5-\sqrt{33} ಭಾಗಿಸಿ.
-2x^{2}-5x+1=-2\left(x-\frac{-\sqrt{33}-5}{4}\right)\left(x-\frac{\sqrt{33}-5}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{-5-\sqrt{33}}{4} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{-5+\sqrt{33}}{4} ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}