ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-x^{2}+14x=-11
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
-x^{2}+14x-\left(-11\right)=-11-\left(-11\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 11 ಸೇರಿಸಿ.
-x^{2}+14x-\left(-11\right)=0
-11 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
-x^{2}+14x+11=0
0 ದಿಂದ -11 ಕಳೆಯಿರಿ.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 14 ಮತ್ತು c ಗೆ 11 ಬದಲಿಸಿ.
x=\frac{-14±\sqrt{196-4\left(-1\right)\times 11}}{2\left(-1\right)}
ವರ್ಗ 14.
x=\frac{-14±\sqrt{196+4\times 11}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14±\sqrt{196+44}}{2\left(-1\right)}
11 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14±\sqrt{240}}{2\left(-1\right)}
44 ಗೆ 196 ಸೇರಿಸಿ.
x=\frac{-14±4\sqrt{15}}{2\left(-1\right)}
240 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-14±4\sqrt{15}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{15}-14}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14±4\sqrt{15}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{15} ಗೆ -14 ಸೇರಿಸಿ.
x=7-2\sqrt{15}
-2 ದಿಂದ -14+4\sqrt{15} ಭಾಗಿಸಿ.
x=\frac{-4\sqrt{15}-14}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14±4\sqrt{15}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -14 ದಿಂದ 4\sqrt{15} ಕಳೆಯಿರಿ.
x=2\sqrt{15}+7
-2 ದಿಂದ -14-4\sqrt{15} ಭಾಗಿಸಿ.
x=7-2\sqrt{15} x=2\sqrt{15}+7
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-x^{2}+14x=-11
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+14x}{-1}=-\frac{11}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{14}{-1}x=-\frac{11}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-14x=-\frac{11}{-1}
-1 ದಿಂದ 14 ಭಾಗಿಸಿ.
x^{2}-14x=11
-1 ದಿಂದ -11 ಭಾಗಿಸಿ.
x^{2}-14x+\left(-7\right)^{2}=11+\left(-7\right)^{2}
-7 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -14 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -7 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-14x+49=11+49
ವರ್ಗ -7.
x^{2}-14x+49=60
49 ಗೆ 11 ಸೇರಿಸಿ.
\left(x-7\right)^{2}=60
ಅಪವರ್ತನ x^{2}-14x+49. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-7\right)^{2}}=\sqrt{60}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-7=2\sqrt{15} x-7=-2\sqrt{15}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2\sqrt{15}+7 x=7-2\sqrt{15}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7 ಸೇರಿಸಿ.