b ಪರಿಹರಿಸಿ
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&a\leq 0\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
a ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&arg(b)\geq \pi \text{ or }b=0\end{matrix}\right.
b ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&arg(a)\geq \pi \text{ or }a=0\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
a ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&b\leq 0\end{matrix}\right.
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\sqrt{2a^{2}-3ab}=-a
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
\left(-3a\right)b+2a^{2}=a^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
\left(-3a\right)b+2a^{2}-2a^{2}=a^{2}-2a^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2a^{2} ಕಳೆಯಿರಿ.
\left(-3a\right)b=a^{2}-2a^{2}
2a^{2} ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\left(-3a\right)b=-a^{2}
a^{2} ದಿಂದ 2a^{2} ಕಳೆಯಿರಿ.
\frac{\left(-3a\right)b}{-3a}=-\frac{a^{2}}{-3a}
-3a ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
b=-\frac{a^{2}}{-3a}
-3a ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3a ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
b=\frac{a}{3}
-3a ದಿಂದ -a^{2} ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}