ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-9x^{2}+18x+68=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\times 68}}{2\left(-9\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -9, b ಗೆ 18 ಮತ್ತು c ಗೆ 68 ಬದಲಿಸಿ.
x=\frac{-18±\sqrt{324-4\left(-9\right)\times 68}}{2\left(-9\right)}
ವರ್ಗ 18.
x=\frac{-18±\sqrt{324+36\times 68}}{2\left(-9\right)}
-9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-18±\sqrt{324+2448}}{2\left(-9\right)}
68 ಅನ್ನು 36 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-18±\sqrt{2772}}{2\left(-9\right)}
2448 ಗೆ 324 ಸೇರಿಸಿ.
x=\frac{-18±6\sqrt{77}}{2\left(-9\right)}
2772 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-18±6\sqrt{77}}{-18}
-9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{77}-18}{-18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-18±6\sqrt{77}}{-18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{77} ಗೆ -18 ಸೇರಿಸಿ.
x=-\frac{\sqrt{77}}{3}+1
-18 ದಿಂದ -18+6\sqrt{77} ಭಾಗಿಸಿ.
x=\frac{-6\sqrt{77}-18}{-18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-18±6\sqrt{77}}{-18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -18 ದಿಂದ 6\sqrt{77} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{77}}{3}+1
-18 ದಿಂದ -18-6\sqrt{77} ಭಾಗಿಸಿ.
x=-\frac{\sqrt{77}}{3}+1 x=\frac{\sqrt{77}}{3}+1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-9x^{2}+18x+68=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
-9x^{2}+18x+68-68=-68
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 68 ಕಳೆಯಿರಿ.
-9x^{2}+18x=-68
68 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{-9x^{2}+18x}{-9}=-\frac{68}{-9}
-9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{18}{-9}x=-\frac{68}{-9}
-9 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -9 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-2x=-\frac{68}{-9}
-9 ದಿಂದ 18 ಭಾಗಿಸಿ.
x^{2}-2x=\frac{68}{9}
-9 ದಿಂದ -68 ಭಾಗಿಸಿ.
x^{2}-2x+1=\frac{68}{9}+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-2x+1=\frac{77}{9}
1 ಗೆ \frac{68}{9} ಸೇರಿಸಿ.
\left(x-1\right)^{2}=\frac{77}{9}
ಅಪವರ್ತನ x^{2}-2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{77}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-1=\frac{\sqrt{77}}{3} x-1=-\frac{\sqrt{77}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{77}}{3}+1 x=-\frac{\sqrt{77}}{3}+1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.