ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-7x^{2}+84x-189=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-84±\sqrt{84^{2}-4\left(-7\right)\left(-189\right)}}{2\left(-7\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -7, b ಗೆ 84 ಮತ್ತು c ಗೆ -189 ಬದಲಿಸಿ.
x=\frac{-84±\sqrt{7056-4\left(-7\right)\left(-189\right)}}{2\left(-7\right)}
ವರ್ಗ 84.
x=\frac{-84±\sqrt{7056+28\left(-189\right)}}{2\left(-7\right)}
-7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-84±\sqrt{7056-5292}}{2\left(-7\right)}
-189 ಅನ್ನು 28 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-84±\sqrt{1764}}{2\left(-7\right)}
-5292 ಗೆ 7056 ಸೇರಿಸಿ.
x=\frac{-84±42}{2\left(-7\right)}
1764 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-84±42}{-14}
-7 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{42}{-14}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-84±42}{-14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 42 ಗೆ -84 ಸೇರಿಸಿ.
x=3
-14 ದಿಂದ -42 ಭಾಗಿಸಿ.
x=-\frac{126}{-14}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-84±42}{-14} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -84 ದಿಂದ 42 ಕಳೆಯಿರಿ.
x=9
-14 ದಿಂದ -126 ಭಾಗಿಸಿ.
x=3 x=9
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-7x^{2}+84x-189=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
-7x^{2}+84x-189-\left(-189\right)=-\left(-189\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 189 ಸೇರಿಸಿ.
-7x^{2}+84x=-\left(-189\right)
-189 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
-7x^{2}+84x=189
0 ದಿಂದ -189 ಕಳೆಯಿರಿ.
\frac{-7x^{2}+84x}{-7}=\frac{189}{-7}
-7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{84}{-7}x=\frac{189}{-7}
-7 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -7 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-12x=\frac{189}{-7}
-7 ದಿಂದ 84 ಭಾಗಿಸಿ.
x^{2}-12x=-27
-7 ದಿಂದ 189 ಭಾಗಿಸಿ.
x^{2}-12x+\left(-6\right)^{2}=-27+\left(-6\right)^{2}
-6 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -12 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -6 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-12x+36=-27+36
ವರ್ಗ -6.
x^{2}-12x+36=9
36 ಗೆ -27 ಸೇರಿಸಿ.
\left(x-6\right)^{2}=9
ಅಪವರ್ತನ x^{2}-12x+36. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-6\right)^{2}}=\sqrt{9}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-6=3 x-6=-3
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=9 x=3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 6 ಸೇರಿಸಿ.