ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-5x^{2}-2-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-6x^{2}-2=2x
-6x^{2} ಪಡೆದುಕೊಳ್ಳಲು -5x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-6x^{2}-2-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-6x^{2}-2x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -6, b ಗೆ -2 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
ವರ್ಗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+24\left(-2\right)}}{2\left(-6\right)}
-6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-48}}{2\left(-6\right)}
-2 ಅನ್ನು 24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{-44}}{2\left(-6\right)}
-48 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-\left(-2\right)±2\sqrt{11}i}{2\left(-6\right)}
-44 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2±2\sqrt{11}i}{2\left(-6\right)}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
x=\frac{2±2\sqrt{11}i}{-12}
-6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2+2\sqrt{11}i}{-12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{11}i}{-12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{11} ಗೆ 2 ಸೇರಿಸಿ.
x=\frac{-\sqrt{11}i-1}{6}
-12 ದಿಂದ 2+2i\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{11}i+2}{-12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{11}i}{-12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 2i\sqrt{11} ಕಳೆಯಿರಿ.
x=\frac{-1+\sqrt{11}i}{6}
-12 ದಿಂದ 2-2i\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{11}i-1}{6} x=\frac{-1+\sqrt{11}i}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-5x^{2}-2-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-6x^{2}-2=2x
-6x^{2} ಪಡೆದುಕೊಳ್ಳಲು -5x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-6x^{2}-2-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-6x^{2}-2x=2
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{-6x^{2}-2x}{-6}=\frac{2}{-6}
-6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{2}{-6}\right)x=\frac{2}{-6}
-6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{1}{3}x=\frac{2}{-6}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{1}{3}x=-\frac{1}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{1}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{1}{3}+\frac{1}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{11}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{36} ಗೆ -\frac{1}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{1}{6}\right)^{2}=-\frac{11}{36}
ಅಪವರ್ತನ x^{2}+\frac{1}{3}x+\frac{1}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{6}=\frac{\sqrt{11}i}{6} x+\frac{1}{6}=-\frac{\sqrt{11}i}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-1+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-1}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{6} ಕಳೆಯಿರಿ.