ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-5x^{2}+9x=-3
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
-5x^{2}+9x-\left(-3\right)=-3-\left(-3\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.
-5x^{2}+9x-\left(-3\right)=0
-3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
-5x^{2}+9x+3=0
0 ದಿಂದ -3 ಕಳೆಯಿರಿ.
x=\frac{-9±\sqrt{9^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -5, b ಗೆ 9 ಮತ್ತು c ಗೆ 3 ಬದಲಿಸಿ.
x=\frac{-9±\sqrt{81-4\left(-5\right)\times 3}}{2\left(-5\right)}
ವರ್ಗ 9.
x=\frac{-9±\sqrt{81+20\times 3}}{2\left(-5\right)}
-5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{81+60}}{2\left(-5\right)}
3 ಅನ್ನು 20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{141}}{2\left(-5\right)}
60 ಗೆ 81 ಸೇರಿಸಿ.
x=\frac{-9±\sqrt{141}}{-10}
-5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{141}-9}{-10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{141}}{-10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{141} ಗೆ -9 ಸೇರಿಸಿ.
x=\frac{9-\sqrt{141}}{10}
-10 ದಿಂದ -9+\sqrt{141} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{141}-9}{-10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{141}}{-10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -9 ದಿಂದ \sqrt{141} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{141}+9}{10}
-10 ದಿಂದ -9-\sqrt{141} ಭಾಗಿಸಿ.
x=\frac{9-\sqrt{141}}{10} x=\frac{\sqrt{141}+9}{10}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-5x^{2}+9x=-3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-5x^{2}+9x}{-5}=-\frac{3}{-5}
-5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{9}{-5}x=-\frac{3}{-5}
-5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{9}{5}x=-\frac{3}{-5}
-5 ದಿಂದ 9 ಭಾಗಿಸಿ.
x^{2}-\frac{9}{5}x=\frac{3}{5}
-5 ದಿಂದ -3 ಭಾಗಿಸಿ.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=\frac{3}{5}+\left(-\frac{9}{10}\right)^{2}
-\frac{9}{10} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{9}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{9}{10} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{3}{5}+\frac{81}{100}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{9}{10} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{141}{100}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{81}{100} ಗೆ \frac{3}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{9}{10}\right)^{2}=\frac{141}{100}
ಅಪವರ್ತನ x^{2}-\frac{9}{5}x+\frac{81}{100}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{\frac{141}{100}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{9}{10}=\frac{\sqrt{141}}{10} x-\frac{9}{10}=-\frac{\sqrt{141}}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{141}+9}{10} x=\frac{9-\sqrt{141}}{10}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{9}{10} ಸೇರಿಸಿ.