ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-5x\left(2x-5\right)=3x+4
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ \frac{5}{2} ಗೆ ಸಮನಾಗಿರಬಾರದು. 2x-5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-10x^{2}+25x=3x+4
2x-5 ದಿಂದ -5x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-10x^{2}+25x-3x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-10x^{2}+22x=4
22x ಪಡೆದುಕೊಳ್ಳಲು 25x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-10x^{2}+22x-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
x=\frac{-22±\sqrt{22^{2}-4\left(-10\right)\left(-4\right)}}{2\left(-10\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -10, b ಗೆ 22 ಮತ್ತು c ಗೆ -4 ಬದಲಿಸಿ.
x=\frac{-22±\sqrt{484-4\left(-10\right)\left(-4\right)}}{2\left(-10\right)}
ವರ್ಗ 22.
x=\frac{-22±\sqrt{484+40\left(-4\right)}}{2\left(-10\right)}
-10 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-22±\sqrt{484-160}}{2\left(-10\right)}
-4 ಅನ್ನು 40 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-22±\sqrt{324}}{2\left(-10\right)}
-160 ಗೆ 484 ಸೇರಿಸಿ.
x=\frac{-22±18}{2\left(-10\right)}
324 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-22±18}{-20}
-10 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{4}{-20}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-22±18}{-20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 18 ಗೆ -22 ಸೇರಿಸಿ.
x=\frac{1}{5}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-4}{-20} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{40}{-20}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-22±18}{-20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -22 ದಿಂದ 18 ಕಳೆಯಿರಿ.
x=2
-20 ದಿಂದ -40 ಭಾಗಿಸಿ.
x=\frac{1}{5} x=2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-5x\left(2x-5\right)=3x+4
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ \frac{5}{2} ಗೆ ಸಮನಾಗಿರಬಾರದು. 2x-5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-10x^{2}+25x=3x+4
2x-5 ದಿಂದ -5x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-10x^{2}+25x-3x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-10x^{2}+22x=4
22x ಪಡೆದುಕೊಳ್ಳಲು 25x ಮತ್ತು -3x ಕೂಡಿಸಿ.
\frac{-10x^{2}+22x}{-10}=\frac{4}{-10}
-10 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{22}{-10}x=\frac{4}{-10}
-10 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -10 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{11}{5}x=\frac{4}{-10}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{22}{-10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{11}{5}x=-\frac{2}{5}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{-10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{11}{5}x+\left(-\frac{11}{10}\right)^{2}=-\frac{2}{5}+\left(-\frac{11}{10}\right)^{2}
-\frac{11}{10} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{11}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{11}{10} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{11}{5}x+\frac{121}{100}=-\frac{2}{5}+\frac{121}{100}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{11}{10} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{11}{5}x+\frac{121}{100}=\frac{81}{100}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{121}{100} ಗೆ -\frac{2}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{11}{10}\right)^{2}=\frac{81}{100}
ಅಪವರ್ತನ x^{2}-\frac{11}{5}x+\frac{121}{100}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{11}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{11}{10}=\frac{9}{10} x-\frac{11}{10}=-\frac{9}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2 x=\frac{1}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{11}{10} ಸೇರಿಸಿ.