ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-49t^{2}+2t-10=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-2±\sqrt{2^{2}-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -49, b ಗೆ 2 ಮತ್ತು c ಗೆ -10 ಬದಲಿಸಿ.
t=\frac{-2±\sqrt{4-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
ವರ್ಗ 2.
t=\frac{-2±\sqrt{4+196\left(-10\right)}}{2\left(-49\right)}
-49 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-2±\sqrt{4-1960}}{2\left(-49\right)}
-10 ಅನ್ನು 196 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-2±\sqrt{-1956}}{2\left(-49\right)}
-1960 ಗೆ 4 ಸೇರಿಸಿ.
t=\frac{-2±2\sqrt{489}i}{2\left(-49\right)}
-1956 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{-2±2\sqrt{489}i}{-98}
-49 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-2+2\sqrt{489}i}{-98}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-2±2\sqrt{489}i}{-98} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{489} ಗೆ -2 ಸೇರಿಸಿ.
t=\frac{-\sqrt{489}i+1}{49}
-98 ದಿಂದ -2+2i\sqrt{489} ಭಾಗಿಸಿ.
t=\frac{-2\sqrt{489}i-2}{-98}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-2±2\sqrt{489}i}{-98} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 2i\sqrt{489} ಕಳೆಯಿರಿ.
t=\frac{1+\sqrt{489}i}{49}
-98 ದಿಂದ -2-2i\sqrt{489} ಭಾಗಿಸಿ.
t=\frac{-\sqrt{489}i+1}{49} t=\frac{1+\sqrt{489}i}{49}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-49t^{2}+2t-10=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
-49t^{2}+2t-10-\left(-10\right)=-\left(-10\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 10 ಸೇರಿಸಿ.
-49t^{2}+2t=-\left(-10\right)
-10 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
-49t^{2}+2t=10
0 ದಿಂದ -10 ಕಳೆಯಿರಿ.
\frac{-49t^{2}+2t}{-49}=\frac{10}{-49}
-49 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t^{2}+\frac{2}{-49}t=\frac{10}{-49}
-49 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -49 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t^{2}-\frac{2}{49}t=\frac{10}{-49}
-49 ದಿಂದ 2 ಭಾಗಿಸಿ.
t^{2}-\frac{2}{49}t=-\frac{10}{49}
-49 ದಿಂದ 10 ಭಾಗಿಸಿ.
t^{2}-\frac{2}{49}t+\left(-\frac{1}{49}\right)^{2}=-\frac{10}{49}+\left(-\frac{1}{49}\right)^{2}
-\frac{1}{49} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{2}{49} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{49} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-\frac{2}{49}t+\frac{1}{2401}=-\frac{10}{49}+\frac{1}{2401}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{49} ವರ್ಗಗೊಳಿಸಿ.
t^{2}-\frac{2}{49}t+\frac{1}{2401}=-\frac{489}{2401}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{2401} ಗೆ -\frac{10}{49} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(t-\frac{1}{49}\right)^{2}=-\frac{489}{2401}
ಅಪವರ್ತನ t^{2}-\frac{2}{49}t+\frac{1}{2401}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-\frac{1}{49}\right)^{2}}=\sqrt{-\frac{489}{2401}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-\frac{1}{49}=\frac{\sqrt{489}i}{49} t-\frac{1}{49}=-\frac{\sqrt{489}i}{49}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=\frac{1+\sqrt{489}i}{49} t=\frac{-\sqrt{489}i+1}{49}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{49} ಸೇರಿಸಿ.