ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
k ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-20k^{2}+24k=0
5k-6 ದಿಂದ -4k ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
k\left(-20k+24\right)=0
k ಅಪವರ್ತನಗೊಳಿಸಿ.
k=0 k=\frac{6}{5}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, k=0 ಮತ್ತು -20k+24=0 ಪರಿಹರಿಸಿ.
-20k^{2}+24k=0
5k-6 ದಿಂದ -4k ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
k=\frac{-24±\sqrt{24^{2}}}{2\left(-20\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -20, b ಗೆ 24 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
k=\frac{-24±24}{2\left(-20\right)}
24^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k=\frac{-24±24}{-40}
-20 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{0}{-40}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{-24±24}{-40} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 24 ಗೆ -24 ಸೇರಿಸಿ.
k=0
-40 ದಿಂದ 0 ಭಾಗಿಸಿ.
k=-\frac{48}{-40}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{-24±24}{-40} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -24 ದಿಂದ 24 ಕಳೆಯಿರಿ.
k=\frac{6}{5}
8 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-48}{-40} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
k=0 k=\frac{6}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-20k^{2}+24k=0
5k-6 ದಿಂದ -4k ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-20k^{2}+24k}{-20}=\frac{0}{-20}
-20 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
k^{2}+\frac{24}{-20}k=\frac{0}{-20}
-20 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -20 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
k^{2}-\frac{6}{5}k=\frac{0}{-20}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{24}{-20} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
k^{2}-\frac{6}{5}k=0
-20 ದಿಂದ 0 ಭಾಗಿಸಿ.
k^{2}-\frac{6}{5}k+\left(-\frac{3}{5}\right)^{2}=\left(-\frac{3}{5}\right)^{2}
-\frac{3}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{6}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
k^{2}-\frac{6}{5}k+\frac{9}{25}=\frac{9}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{5} ವರ್ಗಗೊಳಿಸಿ.
\left(k-\frac{3}{5}\right)^{2}=\frac{9}{25}
ಅಪವರ್ತನ k^{2}-\frac{6}{5}k+\frac{9}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(k-\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k-\frac{3}{5}=\frac{3}{5} k-\frac{3}{5}=-\frac{3}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
k=\frac{6}{5} k=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{5} ಸೇರಿಸಿ.