x ಪರಿಹರಿಸಿ
x = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
x=-2
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Polynomial
- 3 x ^ { 2 } - 17 x = 22
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-3x^{2}-17x-22=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 22 ಕಳೆಯಿರಿ.
a+b=-17 ab=-3\left(-22\right)=66
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -3x^{2}+ax+bx-22 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-66 -2,-33 -3,-22 -6,-11
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 66 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-66=-67 -2-33=-35 -3-22=-25 -6-11=-17
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-6 b=-11
ಪರಿಹಾರವು -17 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-3x^{2}-6x\right)+\left(-11x-22\right)
\left(-3x^{2}-6x\right)+\left(-11x-22\right) ನ ಹಾಗೆ -3x^{2}-17x-22 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(-x-2\right)+11\left(-x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 3x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 11 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-x-2\right)\left(3x+11\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=-2 x=-\frac{11}{3}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -x-2=0 ಮತ್ತು 3x+11=0 ಪರಿಹರಿಸಿ.
-3x^{2}-17x=22
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
-3x^{2}-17x-22=22-22
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 22 ಕಳೆಯಿರಿ.
-3x^{2}-17x-22=0
22 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-3\right)\left(-22\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -17 ಮತ್ತು c ಗೆ -22 ಬದಲಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-3\right)\left(-22\right)}}{2\left(-3\right)}
ವರ್ಗ -17.
x=\frac{-\left(-17\right)±\sqrt{289+12\left(-22\right)}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{289-264}}{2\left(-3\right)}
-22 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{25}}{2\left(-3\right)}
-264 ಗೆ 289 ಸೇರಿಸಿ.
x=\frac{-\left(-17\right)±5}{2\left(-3\right)}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{17±5}{2\left(-3\right)}
-17 ನ ವಿಲೋಮವು 17 ಆಗಿದೆ.
x=\frac{17±5}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{22}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±5}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 17 ಸೇರಿಸಿ.
x=-\frac{11}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{22}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{12}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±5}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=-2
-6 ದಿಂದ 12 ಭಾಗಿಸಿ.
x=-\frac{11}{3} x=-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-3x^{2}-17x=22
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}-17x}{-3}=\frac{22}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{17}{-3}\right)x=\frac{22}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{17}{3}x=\frac{22}{-3}
-3 ದಿಂದ -17 ಭಾಗಿಸಿ.
x^{2}+\frac{17}{3}x=-\frac{22}{3}
-3 ದಿಂದ 22 ಭಾಗಿಸಿ.
x^{2}+\frac{17}{3}x+\left(\frac{17}{6}\right)^{2}=-\frac{22}{3}+\left(\frac{17}{6}\right)^{2}
\frac{17}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{17}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{17}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{17}{3}x+\frac{289}{36}=-\frac{22}{3}+\frac{289}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{17}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{17}{3}x+\frac{289}{36}=\frac{25}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{289}{36} ಗೆ -\frac{22}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{17}{6}\right)^{2}=\frac{25}{36}
ಅಪವರ್ತನ x^{2}+\frac{17}{3}x+\frac{289}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{17}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{17}{6}=\frac{5}{6} x+\frac{17}{6}=-\frac{5}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-2 x=-\frac{11}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{17}{6} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}