k ಪರಿಹರಿಸಿ
k=2\sqrt{7}-3\approx 2.291502622
k=-2\sqrt{7}-3\approx -8.291502622
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-3k^{2}-18k+57=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
k=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-3\right)\times 57}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -18 ಮತ್ತು c ಗೆ 57 ಬದಲಿಸಿ.
k=\frac{-\left(-18\right)±\sqrt{324-4\left(-3\right)\times 57}}{2\left(-3\right)}
ವರ್ಗ -18.
k=\frac{-\left(-18\right)±\sqrt{324+12\times 57}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{-\left(-18\right)±\sqrt{324+684}}{2\left(-3\right)}
57 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{-\left(-18\right)±\sqrt{1008}}{2\left(-3\right)}
684 ಗೆ 324 ಸೇರಿಸಿ.
k=\frac{-\left(-18\right)±12\sqrt{7}}{2\left(-3\right)}
1008 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k=\frac{18±12\sqrt{7}}{2\left(-3\right)}
-18 ನ ವಿಲೋಮವು 18 ಆಗಿದೆ.
k=\frac{18±12\sqrt{7}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{12\sqrt{7}+18}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{18±12\sqrt{7}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12\sqrt{7} ಗೆ 18 ಸೇರಿಸಿ.
k=-2\sqrt{7}-3
-6 ದಿಂದ 18+12\sqrt{7} ಭಾಗಿಸಿ.
k=\frac{18-12\sqrt{7}}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{18±12\sqrt{7}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 18 ದಿಂದ 12\sqrt{7} ಕಳೆಯಿರಿ.
k=2\sqrt{7}-3
-6 ದಿಂದ 18-12\sqrt{7} ಭಾಗಿಸಿ.
k=-2\sqrt{7}-3 k=2\sqrt{7}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-3k^{2}-18k+57=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
-3k^{2}-18k+57-57=-57
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 57 ಕಳೆಯಿರಿ.
-3k^{2}-18k=-57
57 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{-3k^{2}-18k}{-3}=-\frac{57}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
k^{2}+\left(-\frac{18}{-3}\right)k=-\frac{57}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
k^{2}+6k=-\frac{57}{-3}
-3 ದಿಂದ -18 ಭಾಗಿಸಿ.
k^{2}+6k=19
-3 ದಿಂದ -57 ಭಾಗಿಸಿ.
k^{2}+6k+3^{2}=19+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
k^{2}+6k+9=19+9
ವರ್ಗ 3.
k^{2}+6k+9=28
9 ಗೆ 19 ಸೇರಿಸಿ.
\left(k+3\right)^{2}=28
ಅಪವರ್ತನ k^{2}+6k+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(k+3\right)^{2}}=\sqrt{28}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k+3=2\sqrt{7} k+3=-2\sqrt{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
k=2\sqrt{7}-3 k=-2\sqrt{7}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}