ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

1018t+t^{2}=-20387
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
1018t+t^{2}+20387=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 20387 ಸೇರಿಸಿ.
t^{2}+1018t+20387=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-1018±\sqrt{1018^{2}-4\times 20387}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 1018 ಮತ್ತು c ಗೆ 20387 ಬದಲಿಸಿ.
t=\frac{-1018±\sqrt{1036324-4\times 20387}}{2}
ವರ್ಗ 1018.
t=\frac{-1018±\sqrt{1036324-81548}}{2}
20387 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-1018±\sqrt{954776}}{2}
-81548 ಗೆ 1036324 ಸೇರಿಸಿ.
t=\frac{-1018±2\sqrt{238694}}{2}
954776 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{2\sqrt{238694}-1018}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-1018±2\sqrt{238694}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{238694} ಗೆ -1018 ಸೇರಿಸಿ.
t=\sqrt{238694}-509
2 ದಿಂದ -1018+2\sqrt{238694} ಭಾಗಿಸಿ.
t=\frac{-2\sqrt{238694}-1018}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-1018±2\sqrt{238694}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1018 ದಿಂದ 2\sqrt{238694} ಕಳೆಯಿರಿ.
t=-\sqrt{238694}-509
2 ದಿಂದ -1018-2\sqrt{238694} ಭಾಗಿಸಿ.
t=\sqrt{238694}-509 t=-\sqrt{238694}-509
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
1018t+t^{2}=-20387
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
t^{2}+1018t=-20387
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
t^{2}+1018t+509^{2}=-20387+509^{2}
509 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 1018 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 509 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}+1018t+259081=-20387+259081
ವರ್ಗ 509.
t^{2}+1018t+259081=238694
259081 ಗೆ -20387 ಸೇರಿಸಿ.
\left(t+509\right)^{2}=238694
ಅಪವರ್ತನ t^{2}+1018t+259081. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t+509\right)^{2}}=\sqrt{238694}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t+509=\sqrt{238694} t+509=-\sqrt{238694}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=\sqrt{238694}-509 t=-\sqrt{238694}-509
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 509 ಕಳೆಯಿರಿ.