ಅಪವರ್ತನ
-2\left(k-\left(-\sqrt{22}-4\right)\right)\left(k-\left(\sqrt{22}-4\right)\right)
ಮೌಲ್ಯಮಾಪನ
12-16k-2k^{2}
ರಸಪ್ರಶ್ನೆ
Polynomial
- 2 k ^ { 2 } - 16 k + 12
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-2k^{2}-16k+12=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
k=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-2\right)\times 12}}{2\left(-2\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
k=\frac{-\left(-16\right)±\sqrt{256-4\left(-2\right)\times 12}}{2\left(-2\right)}
ವರ್ಗ -16.
k=\frac{-\left(-16\right)±\sqrt{256+8\times 12}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{-\left(-16\right)±\sqrt{256+96}}{2\left(-2\right)}
12 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{-\left(-16\right)±\sqrt{352}}{2\left(-2\right)}
96 ಗೆ 256 ಸೇರಿಸಿ.
k=\frac{-\left(-16\right)±4\sqrt{22}}{2\left(-2\right)}
352 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
k=\frac{16±4\sqrt{22}}{2\left(-2\right)}
-16 ನ ವಿಲೋಮವು 16 ಆಗಿದೆ.
k=\frac{16±4\sqrt{22}}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
k=\frac{4\sqrt{22}+16}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{16±4\sqrt{22}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{22} ಗೆ 16 ಸೇರಿಸಿ.
k=-\left(\sqrt{22}+4\right)
-4 ದಿಂದ 16+4\sqrt{22} ಭಾಗಿಸಿ.
k=\frac{16-4\sqrt{22}}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ k=\frac{16±4\sqrt{22}}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16 ದಿಂದ 4\sqrt{22} ಕಳೆಯಿರಿ.
k=\sqrt{22}-4
-4 ದಿಂದ 16-4\sqrt{22} ಭಾಗಿಸಿ.
-2k^{2}-16k+12=-2\left(k-\left(-\left(\sqrt{22}+4\right)\right)\right)\left(k-\left(\sqrt{22}-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -\left(4+\sqrt{22}\right) ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -4+\sqrt{22} ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}