ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6\left(-3a^{2}-17a+28\right)
6 ಅಪವರ್ತನಗೊಳಿಸಿ.
p+q=-17 pq=-3\times 28=-84
-3a^{2}-17a+28 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು -3a^{2}+pa+qa+28 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. p ಮತ್ತು q ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-84 2,-42 3,-28 4,-21 6,-14 7,-12
pq ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, p ಮತ್ತು q ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. p+q ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -84 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-84=-83 2-42=-40 3-28=-25 4-21=-17 6-14=-8 7-12=-5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
p=4 q=-21
ಪರಿಹಾರವು -17 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-3a^{2}+4a\right)+\left(-21a+28\right)
\left(-3a^{2}+4a\right)+\left(-21a+28\right) ನ ಹಾಗೆ -3a^{2}-17a+28 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-a\left(3a-4\right)-7\left(3a-4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -a ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3a-4\right)\left(-a-7\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3a-4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
6\left(3a-4\right)\left(-a-7\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
-18a^{2}-102a+168=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
a=\frac{-\left(-102\right)±\sqrt{\left(-102\right)^{2}-4\left(-18\right)\times 168}}{2\left(-18\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-\left(-102\right)±\sqrt{10404-4\left(-18\right)\times 168}}{2\left(-18\right)}
ವರ್ಗ -102.
a=\frac{-\left(-102\right)±\sqrt{10404+72\times 168}}{2\left(-18\right)}
-18 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-102\right)±\sqrt{10404+12096}}{2\left(-18\right)}
168 ಅನ್ನು 72 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-102\right)±\sqrt{22500}}{2\left(-18\right)}
12096 ಗೆ 10404 ಸೇರಿಸಿ.
a=\frac{-\left(-102\right)±150}{2\left(-18\right)}
22500 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{102±150}{2\left(-18\right)}
-102 ನ ವಿಲೋಮವು 102 ಆಗಿದೆ.
a=\frac{102±150}{-36}
-18 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{252}{-36}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{102±150}{-36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 150 ಗೆ 102 ಸೇರಿಸಿ.
a=-7
-36 ದಿಂದ 252 ಭಾಗಿಸಿ.
a=-\frac{48}{-36}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{102±150}{-36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 102 ದಿಂದ 150 ಕಳೆಯಿರಿ.
a=\frac{4}{3}
12 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-48}{-36} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
-18a^{2}-102a+168=-18\left(a-\left(-7\right)\right)\left(a-\frac{4}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -7 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{4}{3} ನ್ನು ಬಳಸಿ.
-18a^{2}-102a+168=-18\left(a+7\right)\left(a-\frac{4}{3}\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
-18a^{2}-102a+168=-18\left(a+7\right)\times \frac{-3a+4}{-3}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ a ದಿಂದ \frac{4}{3} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
-18a^{2}-102a+168=6\left(a+7\right)\left(-3a+4\right)
-18 ಮತ್ತು 3 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 3 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.