ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-1+\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
2020 ನ ಘಾತಕ್ಕೆ 1 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 1 ಪಡೆಯಿರಿ.
-1+\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+3-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
-1+3-2-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
-1+1-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
1 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 2 ಕಳೆಯಿರಿ.
-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
0 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1 ಸೇರಿಸಿ.
-\sqrt{8}
\sqrt{\frac{8}{\frac{1}{6}}} ವಿಭಜನೆಯ ವರ್ಗಮೂಲವನ್ನಾಗಿ \frac{\sqrt{8}}{\sqrt{\frac{1}{6}}} ವರ್ಗಮೂಲದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ಪುನಃ ಬರೆಯಿರಿ ಮತ್ತು ಭಾಗಾಕಾರ ಮಾಡಿ.
-2\sqrt{2}
ಅಪವರ್ತನ 8=2^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.