x ಪರಿಹರಿಸಿ
x=-2\sqrt{3}-\frac{1}{3}\approx -3.797434948
x=2\sqrt{3}-\frac{1}{3}\approx 3.130768282
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-3\left(-36\right)=\left(3x+1\right)^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -\frac{1}{3} ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(3x+1\right)^{2}, \left(1+3x\right)^{2},3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
108=\left(3x+1\right)^{2}
108 ಪಡೆದುಕೊಳ್ಳಲು -3 ಮತ್ತು -36 ಗುಣಿಸಿ.
108=9x^{2}+6x+1
\left(3x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9x^{2}+6x+1=108
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
9x^{2}+6x+1-108=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 108 ಕಳೆಯಿರಿ.
9x^{2}+6x-107=0
-107 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 108 ಕಳೆಯಿರಿ.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-107\right)}}{2\times 9}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 9, b ಗೆ 6 ಮತ್ತು c ಗೆ -107 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 9\left(-107\right)}}{2\times 9}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-36\left(-107\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{36+3852}}{2\times 9}
-107 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{3888}}{2\times 9}
3852 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±36\sqrt{3}}{2\times 9}
3888 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-6±36\sqrt{3}}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{36\sqrt{3}-6}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±36\sqrt{3}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 36\sqrt{3} ಗೆ -6 ಸೇರಿಸಿ.
x=2\sqrt{3}-\frac{1}{3}
18 ದಿಂದ -6+36\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{-36\sqrt{3}-6}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±36\sqrt{3}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 36\sqrt{3} ಕಳೆಯಿರಿ.
x=-2\sqrt{3}-\frac{1}{3}
18 ದಿಂದ -6-36\sqrt{3} ಭಾಗಿಸಿ.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-3\left(-36\right)=\left(3x+1\right)^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -\frac{1}{3} ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(3x+1\right)^{2}, \left(1+3x\right)^{2},3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
108=\left(3x+1\right)^{2}
108 ಪಡೆದುಕೊಳ್ಳಲು -3 ಮತ್ತು -36 ಗುಣಿಸಿ.
108=9x^{2}+6x+1
\left(3x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9x^{2}+6x+1=108
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
9x^{2}+6x=108-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
9x^{2}+6x=107
107 ಪಡೆದುಕೊಳ್ಳಲು 108 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\frac{9x^{2}+6x}{9}=\frac{107}{9}
9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{6}{9}x=\frac{107}{9}
9 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 9 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{2}{3}x=\frac{107}{9}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{9} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{107}{9}+\left(\frac{1}{3}\right)^{2}
\frac{1}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{2}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{107+1}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=12
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{9} ಗೆ \frac{107}{9} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{1}{3}\right)^{2}=12
ಅಪವರ್ತನ x^{2}+\frac{2}{3}x+\frac{1}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ವರ್ಗವಾದಾಗ, ಇದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{12}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{3}=2\sqrt{3} x+\frac{1}{3}=-2\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{3} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}