x ಪರಿಹರಿಸಿ
x=-2
x=10
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -\frac{1}{12}, b ಗೆ \frac{2}{3} ಮತ್ತು c ಗೆ \frac{5}{3} ಬದಲಿಸಿ.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{3} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{1}{3}\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
-\frac{1}{12} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4+5}{9}}}{2\left(-\frac{1}{12}\right)}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{5}{3} ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\frac{2}{3}±\sqrt{1}}{2\left(-\frac{1}{12}\right)}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{5}{9} ಗೆ \frac{4}{9} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\frac{2}{3}±1}{2\left(-\frac{1}{12}\right)}
1 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}}
-\frac{1}{12} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\frac{1}{3}}{-\frac{1}{6}}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ಗೆ -\frac{2}{3} ಸೇರಿಸಿ.
x=-2
-\frac{1}{6} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{1}{3} ಗುಣಿಸುವ ಮೂಲಕ -\frac{1}{6} ದಿಂದ \frac{1}{3} ಭಾಗಿಸಿ.
x=-\frac{\frac{5}{3}}{-\frac{1}{6}}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{2}{3} ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=10
-\frac{1}{6} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -\frac{5}{3} ಗುಣಿಸುವ ಮೂಲಕ -\frac{1}{6} ದಿಂದ -\frac{5}{3} ಭಾಗಿಸಿ.
x=-2 x=10
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}-\frac{5}{3}=-\frac{5}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{3} ಕಳೆಯಿರಿ.
-\frac{1}{12}x^{2}+\frac{2}{3}x=-\frac{5}{3}
\frac{5}{3} ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{-\frac{1}{12}x^{2}+\frac{2}{3}x}{-\frac{1}{12}}=-\frac{\frac{5}{3}}{-\frac{1}{12}}
-12 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+\frac{\frac{2}{3}}{-\frac{1}{12}}x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
-\frac{1}{12} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -\frac{1}{12} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-8x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
-\frac{1}{12} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{2}{3} ಗುಣಿಸುವ ಮೂಲಕ -\frac{1}{12} ದಿಂದ \frac{2}{3} ಭಾಗಿಸಿ.
x^{2}-8x=20
-\frac{1}{12} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -\frac{5}{3} ಗುಣಿಸುವ ಮೂಲಕ -\frac{1}{12} ದಿಂದ -\frac{5}{3} ಭಾಗಿಸಿ.
x^{2}-8x+\left(-4\right)^{2}=20+\left(-4\right)^{2}
-4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-8x+16=20+16
ವರ್ಗ -4.
x^{2}-8x+16=36
16 ಗೆ 20 ಸೇರಿಸಿ.
\left(x-4\right)^{2}=36
ಅಪವರ್ತನ x^{2}-8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-4\right)^{2}}=\sqrt{36}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-4=6 x-4=-6
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=10 x=-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}