ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-17x+72=90
x-9 ರಿಂದು x-8 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{2}-17x+72-90=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 90 ಕಳೆಯಿರಿ.
x^{2}-17x-18=0
-18 ಪಡೆದುಕೊಳ್ಳಲು 72 ದಿಂದ 90 ಕಳೆಯಿರಿ.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-18\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -17 ಮತ್ತು c ಗೆ -18 ಬದಲಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-18\right)}}{2}
ವರ್ಗ -17.
x=\frac{-\left(-17\right)±\sqrt{289+72}}{2}
-18 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{361}}{2}
72 ಗೆ 289 ಸೇರಿಸಿ.
x=\frac{-\left(-17\right)±19}{2}
361 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{17±19}{2}
-17 ನ ವಿಲೋಮವು 17 ಆಗಿದೆ.
x=\frac{36}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±19}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 19 ಗೆ 17 ಸೇರಿಸಿ.
x=18
2 ದಿಂದ 36 ಭಾಗಿಸಿ.
x=-\frac{2}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±19}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ದಿಂದ 19 ಕಳೆಯಿರಿ.
x=-1
2 ದಿಂದ -2 ಭಾಗಿಸಿ.
x=18 x=-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-17x+72=90
x-9 ರಿಂದು x-8 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{2}-17x=90-72
ಎರಡೂ ಕಡೆಗಳಿಂದ 72 ಕಳೆಯಿರಿ.
x^{2}-17x=18
18 ಪಡೆದುಕೊಳ್ಳಲು 90 ದಿಂದ 72 ಕಳೆಯಿರಿ.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=18+\left(-\frac{17}{2}\right)^{2}
-\frac{17}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -17 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{17}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-17x+\frac{289}{4}=18+\frac{289}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{17}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-17x+\frac{289}{4}=\frac{361}{4}
\frac{289}{4} ಗೆ 18 ಸೇರಿಸಿ.
\left(x-\frac{17}{2}\right)^{2}=\frac{361}{4}
ಅಪವರ್ತನ x^{2}-17x+\frac{289}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{17}{2}=\frac{19}{2} x-\frac{17}{2}=-\frac{19}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=18 x=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{17}{2} ಸೇರಿಸಿ.