x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}\\x=y\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
x ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\x=y\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
y ಪರಿಹರಿಸಿ
y=x
y=0
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x+y\right)\left(x-y\right)=\left(x-y\right)^{2}
\left(x-y\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು x-y ಮತ್ತು x-y ಗುಣಿಸಿ.
x^{2}-y^{2}=\left(x-y\right)^{2}
\left(x+y\right)\left(x-y\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}=x^{2}-2xy+y^{2}
\left(x-y\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-y^{2}-x^{2}=-2xy+y^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-y^{2}=-2xy+y^{2}
0 ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-2xy+y^{2}=-y^{2}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-2xy=-y^{2}-y^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ y^{2} ಕಳೆಯಿರಿ.
-2xy=-2y^{2}
-2y^{2} ಪಡೆದುಕೊಳ್ಳಲು -y^{2} ಮತ್ತು -y^{2} ಕೂಡಿಸಿ.
xy=y^{2}
ಎರಡೂ ಬದಿಗಳಲ್ಲಿ -2 ರದ್ದುಗೊಳಿಸಿ.
yx=y^{2}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{yx}{y}=\frac{y^{2}}{y}
y ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{y^{2}}{y}
y ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ y ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=y
y ದಿಂದ y^{2} ಭಾಗಿಸಿ.
\left(x+y\right)\left(x-y\right)=\left(x-y\right)^{2}
\left(x-y\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು x-y ಮತ್ತು x-y ಗುಣಿಸಿ.
x^{2}-y^{2}=\left(x-y\right)^{2}
\left(x+y\right)\left(x-y\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}=x^{2}-2xy+y^{2}
\left(x-y\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-y^{2}-x^{2}=-2xy+y^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-y^{2}=-2xy+y^{2}
0 ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-2xy+y^{2}=-y^{2}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-2xy=-y^{2}-y^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ y^{2} ಕಳೆಯಿರಿ.
-2xy=-2y^{2}
-2y^{2} ಪಡೆದುಕೊಳ್ಳಲು -y^{2} ಮತ್ತು -y^{2} ಕೂಡಿಸಿ.
xy=y^{2}
ಎರಡೂ ಬದಿಗಳಲ್ಲಿ -2 ರದ್ದುಗೊಳಿಸಿ.
yx=y^{2}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{yx}{y}=\frac{y^{2}}{y}
y ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{y^{2}}{y}
y ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ y ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=y
y ದಿಂದ y^{2} ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}