ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-9=3\left(-1\right)
\left(x+3\right)\left(x-3\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 3.
x^{2}-9=-3
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -1 ಗುಣಿಸಿ.
x^{2}=-3+9
ಎರಡೂ ಬದಿಗಳಿಗೆ 9 ಸೇರಿಸಿ.
x^{2}=6
6 ಪಡೆದುಕೊಳ್ಳಲು -3 ಮತ್ತು 9 ಸೇರಿಸಿ.
x=\sqrt{6} x=-\sqrt{6}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x^{2}-9=3\left(-1\right)
\left(x+3\right)\left(x-3\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 3.
x^{2}-9=-3
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -1 ಗುಣಿಸಿ.
x^{2}-9+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
x^{2}-6=0
-6 ಪಡೆದುಕೊಳ್ಳಲು -9 ಮತ್ತು 3 ಸೇರಿಸಿ.
x=\frac{0±\sqrt{0^{2}-4\left(-6\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 0 ಮತ್ತು c ಗೆ -6 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\left(-6\right)}}{2}
ವರ್ಗ 0.
x=\frac{0±\sqrt{24}}{2}
-6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±2\sqrt{6}}{2}
24 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\sqrt{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±2\sqrt{6}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-\sqrt{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±2\sqrt{6}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=\sqrt{6} x=-\sqrt{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.