x ಪರಿಹರಿಸಿ
x=4
x=10
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
760+112x-8x^{2}=1080
10+2x ರಿಂದು 76-4x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
760+112x-8x^{2}-1080=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1080 ಕಳೆಯಿರಿ.
-320+112x-8x^{2}=0
-320 ಪಡೆದುಕೊಳ್ಳಲು 760 ದಿಂದ 1080 ಕಳೆಯಿರಿ.
-8x^{2}+112x-320=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-112±\sqrt{112^{2}-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -8, b ಗೆ 112 ಮತ್ತು c ಗೆ -320 ಬದಲಿಸಿ.
x=\frac{-112±\sqrt{12544-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
ವರ್ಗ 112.
x=\frac{-112±\sqrt{12544+32\left(-320\right)}}{2\left(-8\right)}
-8 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-112±\sqrt{12544-10240}}{2\left(-8\right)}
-320 ಅನ್ನು 32 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-112±\sqrt{2304}}{2\left(-8\right)}
-10240 ಗೆ 12544 ಸೇರಿಸಿ.
x=\frac{-112±48}{2\left(-8\right)}
2304 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-112±48}{-16}
-8 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{64}{-16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-112±48}{-16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 48 ಗೆ -112 ಸೇರಿಸಿ.
x=4
-16 ದಿಂದ -64 ಭಾಗಿಸಿ.
x=-\frac{160}{-16}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-112±48}{-16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -112 ದಿಂದ 48 ಕಳೆಯಿರಿ.
x=10
-16 ದಿಂದ -160 ಭಾಗಿಸಿ.
x=4 x=10
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
760+112x-8x^{2}=1080
10+2x ರಿಂದು 76-4x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
112x-8x^{2}=1080-760
ಎರಡೂ ಕಡೆಗಳಿಂದ 760 ಕಳೆಯಿರಿ.
112x-8x^{2}=320
320 ಪಡೆದುಕೊಳ್ಳಲು 1080 ದಿಂದ 760 ಕಳೆಯಿರಿ.
-8x^{2}+112x=320
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-8x^{2}+112x}{-8}=\frac{320}{-8}
-8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{112}{-8}x=\frac{320}{-8}
-8 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -8 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-14x=\frac{320}{-8}
-8 ದಿಂದ 112 ಭಾಗಿಸಿ.
x^{2}-14x=-40
-8 ದಿಂದ 320 ಭಾಗಿಸಿ.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
-7 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -14 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -7 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-14x+49=-40+49
ವರ್ಗ -7.
x^{2}-14x+49=9
49 ಗೆ -40 ಸೇರಿಸಿ.
\left(x-7\right)^{2}=9
ಅಪವರ್ತನ x^{2}-14x+49. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-7=3 x-7=-3
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=10 x=4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}