ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-11x+12=18
x-4 ರಿಂದು 2x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-11x+12-18=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18 ಕಳೆಯಿರಿ.
2x^{2}-11x-6=0
-6 ಪಡೆದುಕೊಳ್ಳಲು 12 ದಿಂದ 18 ಕಳೆಯಿರಿ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -11 ಮತ್ತು c ಗೆ -6 ಬದಲಿಸಿ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-6\right)}}{2\times 2}
ವರ್ಗ -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-6\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 2}
-6 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 2}
48 ಗೆ 121 ಸೇರಿಸಿ.
x=\frac{-\left(-11\right)±13}{2\times 2}
169 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{11±13}{2\times 2}
-11 ನ ವಿಲೋಮವು 11 ಆಗಿದೆ.
x=\frac{11±13}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{24}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{11±13}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ಗೆ 11 ಸೇರಿಸಿ.
x=6
4 ದಿಂದ 24 ಭಾಗಿಸಿ.
x=-\frac{2}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{11±13}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 11 ದಿಂದ 13 ಕಳೆಯಿರಿ.
x=-\frac{1}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=6 x=-\frac{1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-11x+12=18
x-4 ರಿಂದು 2x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-11x=18-12
ಎರಡೂ ಕಡೆಗಳಿಂದ 12 ಕಳೆಯಿರಿ.
2x^{2}-11x=6
6 ಪಡೆದುಕೊಳ್ಳಲು 18 ದಿಂದ 12 ಕಳೆಯಿರಿ.
\frac{2x^{2}-11x}{2}=\frac{6}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{11}{2}x=\frac{6}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{11}{2}x=3
2 ದಿಂದ 6 ಭಾಗಿಸಿ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=3+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{11}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{11}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=3+\frac{121}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{11}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{169}{16}
\frac{121}{16} ಗೆ 3 ಸೇರಿಸಿ.
\left(x-\frac{11}{4}\right)^{2}=\frac{169}{16}
ಅಪವರ್ತನ x^{2}-\frac{11}{2}x+\frac{121}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{11}{4}=\frac{13}{4} x-\frac{11}{4}=-\frac{13}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=6 x=-\frac{1}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{11}{4} ಸೇರಿಸಿ.