ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

18x-3x^{2}=40
x ದಿಂದ 18-3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18x-3x^{2}-40=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 40 ಕಳೆಯಿರಿ.
-3x^{2}+18x-40=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ 18 ಮತ್ತು c ಗೆ -40 ಬದಲಿಸಿ.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-40\right)}}{2\left(-3\right)}
ವರ್ಗ 18.
x=\frac{-18±\sqrt{324+12\left(-40\right)}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-18±\sqrt{324-480}}{2\left(-3\right)}
-40 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-18±\sqrt{-156}}{2\left(-3\right)}
-480 ಗೆ 324 ಸೇರಿಸಿ.
x=\frac{-18±2\sqrt{39}i}{2\left(-3\right)}
-156 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-18±2\sqrt{39}i}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-18+2\sqrt{39}i}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-18±2\sqrt{39}i}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{39} ಗೆ -18 ಸೇರಿಸಿ.
x=-\frac{\sqrt{39}i}{3}+3
-6 ದಿಂದ -18+2i\sqrt{39} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{39}i-18}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-18±2\sqrt{39}i}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -18 ದಿಂದ 2i\sqrt{39} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{39}i}{3}+3
-6 ದಿಂದ -18-2i\sqrt{39} ಭಾಗಿಸಿ.
x=-\frac{\sqrt{39}i}{3}+3 x=\frac{\sqrt{39}i}{3}+3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
18x-3x^{2}=40
x ದಿಂದ 18-3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-3x^{2}+18x=40
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}+18x}{-3}=\frac{40}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{18}{-3}x=\frac{40}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-6x=\frac{40}{-3}
-3 ದಿಂದ 18 ಭಾಗಿಸಿ.
x^{2}-6x=-\frac{40}{3}
-3 ದಿಂದ 40 ಭಾಗಿಸಿ.
x^{2}-6x+\left(-3\right)^{2}=-\frac{40}{3}+\left(-3\right)^{2}
-3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-6x+9=-\frac{40}{3}+9
ವರ್ಗ -3.
x^{2}-6x+9=-\frac{13}{3}
9 ಗೆ -\frac{40}{3} ಸೇರಿಸಿ.
\left(x-3\right)^{2}=-\frac{13}{3}
ಅಪವರ್ತನ x^{2}-6x+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{13}{3}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-3=\frac{\sqrt{39}i}{3} x-3=-\frac{\sqrt{39}i}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{39}i}{3}+3 x=-\frac{\sqrt{39}i}{3}+3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.