ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Quadratic Equation

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

240-8x-x^{2}=1750
20+x ರಿಂದು 12-x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
240-8x-x^{2}-1750=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1750 ಕಳೆಯಿರಿ.
-1510-8x-x^{2}=0
-1510 ಪಡೆದುಕೊಳ್ಳಲು 240 ದಿಂದ 1750 ಕಳೆಯಿರಿ.
-x^{2}-8x-1510=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -8 ಮತ್ತು c ಗೆ -1510 ಬದಲಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
ವರ್ಗ -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-1510\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-6040}}{2\left(-1\right)}
-1510 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{-5976}}{2\left(-1\right)}
-6040 ಗೆ 64 ಸೇರಿಸಿ.
x=\frac{-\left(-8\right)±6\sqrt{166}i}{2\left(-1\right)}
-5976 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8±6\sqrt{166}i}{2\left(-1\right)}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
x=\frac{8±6\sqrt{166}i}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8+6\sqrt{166}i}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±6\sqrt{166}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6i\sqrt{166} ಗೆ 8 ಸೇರಿಸಿ.
x=-3\sqrt{166}i-4
-2 ದಿಂದ 8+6i\sqrt{166} ಭಾಗಿಸಿ.
x=\frac{-6\sqrt{166}i+8}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±6\sqrt{166}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ದಿಂದ 6i\sqrt{166} ಕಳೆಯಿರಿ.
x=-4+3\sqrt{166}i
-2 ದಿಂದ 8-6i\sqrt{166} ಭಾಗಿಸಿ.
x=-3\sqrt{166}i-4 x=-4+3\sqrt{166}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
240-8x-x^{2}=1750
20+x ರಿಂದು 12-x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
-8x-x^{2}=1750-240
ಎರಡೂ ಕಡೆಗಳಿಂದ 240 ಕಳೆಯಿರಿ.
-8x-x^{2}=1510
1510 ಪಡೆದುಕೊಳ್ಳಲು 1750 ದಿಂದ 240 ಕಳೆಯಿರಿ.
-x^{2}-8x=1510
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-8x}{-1}=\frac{1510}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{8}{-1}\right)x=\frac{1510}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+8x=\frac{1510}{-1}
-1 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}+8x=-1510
-1 ದಿಂದ 1510 ಭಾಗಿಸಿ.
x^{2}+8x+4^{2}=-1510+4^{2}
4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+8x+16=-1510+16
ವರ್ಗ 4.
x^{2}+8x+16=-1494
16 ಗೆ -1510 ಸೇರಿಸಿ.
\left(x+4\right)^{2}=-1494
ಅಪವರ್ತನ x^{2}+8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1494}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+4=3\sqrt{166}i x+4=-3\sqrt{166}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-4+3\sqrt{166}i x=-3\sqrt{166}i-4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.