ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

10x-2x^{2}=14
x ದಿಂದ 10-2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x-2x^{2}-14=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 14 ಕಳೆಯಿರಿ.
-2x^{2}+10x-14=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 10 ಮತ್ತು c ಗೆ -14 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+8\left(-14\right)}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100-112}}{2\left(-2\right)}
-14 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{-12}}{2\left(-2\right)}
-112 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±2\sqrt{3}i}{2\left(-2\right)}
-12 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±2\sqrt{3}i}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10+2\sqrt{3}i}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2\sqrt{3}i}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{3} ಗೆ -10 ಸೇರಿಸಿ.
x=\frac{-\sqrt{3}i+5}{2}
-4 ದಿಂದ -10+2i\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{3}i-10}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2\sqrt{3}i}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 2i\sqrt{3} ಕಳೆಯಿರಿ.
x=\frac{5+\sqrt{3}i}{2}
-4 ದಿಂದ -10-2i\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{3}i+5}{2} x=\frac{5+\sqrt{3}i}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
10x-2x^{2}=14
x ದಿಂದ 10-2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-2x^{2}+10x=14
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-2x^{2}+10x}{-2}=\frac{14}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{10}{-2}x=\frac{14}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-5x=\frac{14}{-2}
-2 ದಿಂದ 10 ಭಾಗಿಸಿ.
x^{2}-5x=-7
-2 ದಿಂದ 14 ಭಾಗಿಸಿ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-5x+\frac{25}{4}=-7+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-5x+\frac{25}{4}=-\frac{3}{4}
\frac{25}{4} ಗೆ -7 ಸೇರಿಸಿ.
\left(x-\frac{5}{2}\right)^{2}=-\frac{3}{4}
ಅಪವರ್ತನ x^{2}-5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{2}=\frac{\sqrt{3}i}{2} x-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.