ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{3}-9x^{2}+27x-27=125
\left(x-3\right)^{3} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ಬಳಸಿ.
x^{3}-9x^{2}+27x-27-125=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 125 ಕಳೆಯಿರಿ.
x^{3}-9x^{2}+27x-152=0
-152 ಪಡೆದುಕೊಳ್ಳಲು -27 ದಿಂದ 125 ಕಳೆಯಿರಿ.
±152,±76,±38,±19,±8,±4,±2,±1
ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್‌ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು -152 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 1 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಎಲ್ಲಾ ಅಭ್ಯರ್ಥಿಗಳ ಪಟ್ಟಿ \frac{p}{q}.
x=8
ನಿಖರ ಮೌಲ್ಯದ ಮೂಲಕ ಸಣ್ಣದರಿಂದ ಆರಂಭಿಸಿ ಎಲ್ಲ ಪೂರ್ಣಾಂಕ ಮೌಲ್ಯಗಳನ್ನು ಪ್ರಯತ್ನಿಸುವ ಮೂಲಕ ಒಂದು ಅಂತಹ ವರ್ಗವನ್ನು ಕಂಡುಕೊಳ್ಳಿ. ಯಾವುದೇ ಪೂರ್ಣಾಂಕ ಮೂಲವನ್ನು ಕಂಡುಕೊಳ್ಳದಿದ್ದರೆ, ನಮ್ಮ ಭಿನ್ನಾಂಶಗಳನ್ನು ಪ್ರಯತ್ನಿಸಿ.
x^{2}-x+19=0
ಅಪವರ್ತನ ಪ್ರಮೇಯದ ಪ್ರಕಾರ, x-k ಎನ್ನುವುದು ಪ್ರತಿ ವರ್ಗಮೂಲ k ಕ್ಕೆ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಾಗಿದೆ. x^{2}-x+19 ಪಡೆಯಲು x-8 ರಿಂದ x^{3}-9x^{2}+27x-152 ವಿಭಾಗಿಸಿ. ಫಲಿತಾಂಶವು 0 ಗೆ ಸಮಾಂತರವಾಗುವಲ್ಲಿ ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -1 ಅನ್ನು ಮತ್ತು c ಗೆ 19 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{1±\sqrt{-75}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x^{2}-x+19=0 ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=8 x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
ಎಲ್ಲ ಕಂಡುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
x^{3}-9x^{2}+27x-27=125
\left(x-3\right)^{3} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ಬಳಸಿ.
x^{3}-9x^{2}+27x-27-125=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 125 ಕಳೆಯಿರಿ.
x^{3}-9x^{2}+27x-152=0
-152 ಪಡೆದುಕೊಳ್ಳಲು -27 ದಿಂದ 125 ಕಳೆಯಿರಿ.
±152,±76,±38,±19,±8,±4,±2,±1
ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್‌ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು -152 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 1 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಎಲ್ಲಾ ಅಭ್ಯರ್ಥಿಗಳ ಪಟ್ಟಿ \frac{p}{q}.
x=8
ನಿಖರ ಮೌಲ್ಯದ ಮೂಲಕ ಸಣ್ಣದರಿಂದ ಆರಂಭಿಸಿ ಎಲ್ಲ ಪೂರ್ಣಾಂಕ ಮೌಲ್ಯಗಳನ್ನು ಪ್ರಯತ್ನಿಸುವ ಮೂಲಕ ಒಂದು ಅಂತಹ ವರ್ಗವನ್ನು ಕಂಡುಕೊಳ್ಳಿ. ಯಾವುದೇ ಪೂರ್ಣಾಂಕ ಮೂಲವನ್ನು ಕಂಡುಕೊಳ್ಳದಿದ್ದರೆ, ನಮ್ಮ ಭಿನ್ನಾಂಶಗಳನ್ನು ಪ್ರಯತ್ನಿಸಿ.
x^{2}-x+19=0
ಅಪವರ್ತನ ಪ್ರಮೇಯದ ಪ್ರಕಾರ, x-k ಎನ್ನುವುದು ಪ್ರತಿ ವರ್ಗಮೂಲ k ಕ್ಕೆ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಾಗಿದೆ. x^{2}-x+19 ಪಡೆಯಲು x-8 ರಿಂದ x^{3}-9x^{2}+27x-152 ವಿಭಾಗಿಸಿ. ಫಲಿತಾಂಶವು 0 ಗೆ ಸಮಾಂತರವಾಗುವಲ್ಲಿ ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -1 ಅನ್ನು ಮತ್ತು c ಗೆ 19 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{1±\sqrt{-75}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x\in \emptyset
ನೈಜ ಕ್ಷೇತ್ರದಲ್ಲಿ ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯ ವರ್ಗ ಮೂಲವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ, ಯಾವುದೇ ಪರಿಹಾರಗಳಿಲ್ಲ.
x=8
ಎಲ್ಲ ಕಂಡುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.