x ಪರಿಹರಿಸಿ
x=\frac{2}{3}\approx 0.666666667
x=-4
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-6x+9=\left(2x+1\right)^{2}
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9=4x^{2}+4x+1
\left(2x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9-4x^{2}=4x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}-6x+9=4x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
-3x^{2}-6x+9-4x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-3x^{2}-10x+9=1
-10x ಪಡೆದುಕೊಳ್ಳಲು -6x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-3x^{2}-10x+9-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-3x^{2}-10x+8=0
8 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 1 ಕಳೆಯಿರಿ.
a+b=-10 ab=-3\times 8=-24
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -3x^{2}+ax+bx+8 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-24 2,-12 3,-8 4,-6
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=2 b=-12
ಪರಿಹಾರವು -10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-3x^{2}+2x\right)+\left(-12x+8\right)
\left(-3x^{2}+2x\right)+\left(-12x+8\right) ನ ಹಾಗೆ -3x^{2}-10x+8 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-x\left(3x-2\right)-4\left(3x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x-2\right)\left(-x-4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{2}{3} x=-4
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3x-2=0 ಮತ್ತು -x-4=0 ಪರಿಹರಿಸಿ.
x^{2}-6x+9=\left(2x+1\right)^{2}
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9=4x^{2}+4x+1
\left(2x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9-4x^{2}=4x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}-6x+9=4x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
-3x^{2}-6x+9-4x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-3x^{2}-10x+9=1
-10x ಪಡೆದುಕೊಳ್ಳಲು -6x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-3x^{2}-10x+9-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-3x^{2}-10x+8=0
8 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -10 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)\times 8}}{2\left(-3\right)}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100+12\times 8}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\left(-3\right)}
8 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\left(-3\right)}
96 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±14}{2\left(-3\right)}
196 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±14}{2\left(-3\right)}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{10±14}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{24}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±14}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 14 ಗೆ 10 ಸೇರಿಸಿ.
x=-4
-6 ದಿಂದ 24 ಭಾಗಿಸಿ.
x=-\frac{4}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±14}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 14 ಕಳೆಯಿರಿ.
x=\frac{2}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-4}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-4 x=\frac{2}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-6x+9=\left(2x+1\right)^{2}
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9=4x^{2}+4x+1
\left(2x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}-6x+9-4x^{2}=4x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}-6x+9=4x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
-3x^{2}-6x+9-4x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-3x^{2}-10x+9=1
-10x ಪಡೆದುಕೊಳ್ಳಲು -6x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-3x^{2}-10x=1-9
ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
-3x^{2}-10x=-8
-8 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 9 ಕಳೆಯಿರಿ.
\frac{-3x^{2}-10x}{-3}=-\frac{8}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{10}{-3}\right)x=-\frac{8}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{10}{3}x=-\frac{8}{-3}
-3 ದಿಂದ -10 ಭಾಗಿಸಿ.
x^{2}+\frac{10}{3}x=\frac{8}{3}
-3 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
\frac{5}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{10}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{9} ಗೆ \frac{8}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{5}{3}\right)^{2}=\frac{49}{9}
ಅಪವರ್ತನ x^{2}+\frac{10}{3}x+\frac{25}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{3}=\frac{7}{3} x+\frac{5}{3}=-\frac{7}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2}{3} x=-4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{3} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}