x ಪರಿಹರಿಸಿ
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
x=1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(2x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
5x^{2}-2x+1+8x+4=16
5x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು 4x^{2} ಕೂಡಿಸಿ.
5x^{2}+6x+1+4=16
6x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
5x^{2}+6x+5=16
5 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 4 ಸೇರಿಸಿ.
5x^{2}+6x+5-16=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
5x^{2}+6x-11=0
-11 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 16 ಕಳೆಯಿರಿ.
a+b=6 ab=5\left(-11\right)=-55
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 5x^{2}+ax+bx-11 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,55 -5,11
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -55 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+55=54 -5+11=6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-5 b=11
ಪರಿಹಾರವು 6 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(5x^{2}-5x\right)+\left(11x-11\right)
\left(5x^{2}-5x\right)+\left(11x-11\right) ನ ಹಾಗೆ 5x^{2}+6x-11 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
5x\left(x-1\right)+11\left(x-1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 5x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 11 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-1\right)\left(5x+11\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=1 x=-\frac{11}{5}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-1=0 ಮತ್ತು 5x+11=0 ಪರಿಹರಿಸಿ.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(2x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
5x^{2}-2x+1+8x+4=16
5x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು 4x^{2} ಕೂಡಿಸಿ.
5x^{2}+6x+1+4=16
6x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
5x^{2}+6x+5=16
5 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 4 ಸೇರಿಸಿ.
5x^{2}+6x+5-16=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
5x^{2}+6x-11=0
-11 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 16 ಕಳೆಯಿರಿ.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-11\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ 6 ಮತ್ತು c ಗೆ -11 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 5\left(-11\right)}}{2\times 5}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-20\left(-11\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{36+220}}{2\times 5}
-11 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{256}}{2\times 5}
220 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±16}{2\times 5}
256 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-6±16}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{10}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±16}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16 ಗೆ -6 ಸೇರಿಸಿ.
x=1
10 ದಿಂದ 10 ಭಾಗಿಸಿ.
x=-\frac{22}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±16}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 16 ಕಳೆಯಿರಿ.
x=-\frac{11}{5}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-22}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=1 x=-\frac{11}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-2x+1+4x^{2}+8x+4=16
\left(2x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
5x^{2}-2x+1+8x+4=16
5x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು 4x^{2} ಕೂಡಿಸಿ.
5x^{2}+6x+1+4=16
6x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
5x^{2}+6x+5=16
5 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 4 ಸೇರಿಸಿ.
5x^{2}+6x=16-5
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
5x^{2}+6x=11
11 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 5 ಕಳೆಯಿರಿ.
\frac{5x^{2}+6x}{5}=\frac{11}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{6}{5}x=\frac{11}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{11}{5}+\left(\frac{3}{5}\right)^{2}
\frac{3}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{6}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{11}{5}+\frac{9}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{5} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{64}{25}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{25} ಗೆ \frac{11}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{5}\right)^{2}=\frac{64}{25}
ಅಪವರ್ತನ x^{2}+\frac{6}{5}x+\frac{9}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{64}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{5}=\frac{8}{5} x+\frac{3}{5}=-\frac{8}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=1 x=-\frac{11}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{5} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}