ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x-3x^{2}=-7x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x-3x^{2}+7x=2
ಎರಡೂ ಬದಿಗಳಿಗೆ 7x ಸೇರಿಸಿ.
8x-3x^{2}=2
8x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 7x ಕೂಡಿಸಿ.
8x-3x^{2}-2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
-3x^{2}+8x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ 8 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
ವರ್ಗ 8.
x=\frac{-8±\sqrt{64+12\left(-2\right)}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{64-24}}{2\left(-3\right)}
-2 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{40}}{2\left(-3\right)}
-24 ಗೆ 64 ಸೇರಿಸಿ.
x=\frac{-8±2\sqrt{10}}{2\left(-3\right)}
40 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-8±2\sqrt{10}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{10}-8}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-8±2\sqrt{10}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{10} ಗೆ -8 ಸೇರಿಸಿ.
x=\frac{4-\sqrt{10}}{3}
-6 ದಿಂದ -8+2\sqrt{10} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{10}-8}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-8±2\sqrt{10}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -8 ದಿಂದ 2\sqrt{10} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{10}+4}{3}
-6 ದಿಂದ -8-2\sqrt{10} ಭಾಗಿಸಿ.
x=\frac{4-\sqrt{10}}{3} x=\frac{\sqrt{10}+4}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x-3x^{2}=-7x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x-3x^{2}+7x=2
ಎರಡೂ ಬದಿಗಳಿಗೆ 7x ಸೇರಿಸಿ.
8x-3x^{2}=2
8x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 7x ಕೂಡಿಸಿ.
-3x^{2}+8x=2
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}+8x}{-3}=\frac{2}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{8}{-3}x=\frac{2}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{8}{3}x=\frac{2}{-3}
-3 ದಿಂದ 8 ಭಾಗಿಸಿ.
x^{2}-\frac{8}{3}x=-\frac{2}{3}
-3 ದಿಂದ 2 ಭಾಗಿಸಿ.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{4}{3}\right)^{2}
-\frac{4}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{8}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{4}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{2}{3}+\frac{16}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{4}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{10}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{16}{9} ಗೆ -\frac{2}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{4}{3}\right)^{2}=\frac{10}{9}
ಅಪವರ್ತನ x^{2}-\frac{8}{3}x+\frac{16}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{4}{3}=\frac{\sqrt{10}}{3} x-\frac{4}{3}=-\frac{\sqrt{10}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{10}+4}{3} x=\frac{4-\sqrt{10}}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{4}{3} ಸೇರಿಸಿ.