ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x=\frac{3}{x+2}-\frac{x+2}{x+2}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+2}{x+2} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3-\left(x+2\right)}{x+2}
\frac{3}{x+2} ಮತ್ತು \frac{x+2}{x+2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
x=\frac{3-x-2}{x+2}
3-\left(x+2\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{1-x}{x+2}
3-x-2 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
x-\frac{1-x}{x+2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1-x}{x+2} ಕಳೆಯಿರಿ.
\frac{x\left(x+2\right)}{x+2}-\frac{1-x}{x+2}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+2}{x+2} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{x\left(x+2\right)-\left(1-x\right)}{x+2}=0
\frac{x\left(x+2\right)}{x+2} ಮತ್ತು \frac{1-x}{x+2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{x^{2}+2x-1+x}{x+2}=0
x\left(x+2\right)-\left(1-x\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{x^{2}+3x-1}{x+2}=0
x^{2}+2x-1+x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
x^{2}+3x-1=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. x+2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 3 ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\left(-1\right)}}{2}
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+4}}{2}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{13}}{2}
4 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{\sqrt{13}-3}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\sqrt{13}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{13} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{-\sqrt{13}-3}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\sqrt{13}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \sqrt{13} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=\frac{3}{x+2}-\frac{x+2}{x+2}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+2}{x+2} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3-\left(x+2\right)}{x+2}
\frac{3}{x+2} ಮತ್ತು \frac{x+2}{x+2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
x=\frac{3-x-2}{x+2}
3-\left(x+2\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{1-x}{x+2}
3-x-2 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
x-\frac{1-x}{x+2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1-x}{x+2} ಕಳೆಯಿರಿ.
\frac{x\left(x+2\right)}{x+2}-\frac{1-x}{x+2}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+2}{x+2} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{x\left(x+2\right)-\left(1-x\right)}{x+2}=0
\frac{x\left(x+2\right)}{x+2} ಮತ್ತು \frac{1-x}{x+2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{x^{2}+2x-1+x}{x+2}=0
x\left(x+2\right)-\left(1-x\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{x^{2}+3x-1}{x+2}=0
x^{2}+2x-1+x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
x^{2}+3x-1=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. x+2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+3x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
\frac{9}{4} ಗೆ 1 ಸೇರಿಸಿ.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
ಅಪವರ್ತನ x^{2}+3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2} ಕಳೆಯಿರಿ.