ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

1.5x-0.5x^{2}+9=10
3-0.5x ರಿಂದು x+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
1.5x-0.5x^{2}+9-10=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 10 ಕಳೆಯಿರಿ.
1.5x-0.5x^{2}-1=0
-1 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 10 ಕಳೆಯಿರಿ.
-0.5x^{2}+1.5x-1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-1.5±\sqrt{1.5^{2}-4\left(-0.5\right)\left(-1\right)}}{2\left(-0.5\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -0.5, b ಗೆ 1.5 ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-1.5±\sqrt{2.25-4\left(-0.5\right)\left(-1\right)}}{2\left(-0.5\right)}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ 1.5 ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-1.5±\sqrt{2.25+2\left(-1\right)}}{2\left(-0.5\right)}
-0.5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1.5±\sqrt{2.25-2}}{2\left(-0.5\right)}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1.5±\sqrt{0.25}}{2\left(-0.5\right)}
-2 ಗೆ 2.25 ಸೇರಿಸಿ.
x=\frac{-1.5±\frac{1}{2}}{2\left(-0.5\right)}
0.25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-1.5±\frac{1}{2}}{-1}
-0.5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{1}{-1}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1.5±\frac{1}{2}}{-1} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{2} ಗೆ -1.5 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=1
-1 ದಿಂದ -1 ಭಾಗಿಸಿ.
x=-\frac{2}{-1}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1.5±\frac{1}{2}}{-1} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ -1.5 ದಿಂದ \frac{1}{2} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=2
-1 ದಿಂದ -2 ಭಾಗಿಸಿ.
x=1 x=2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
1.5x-0.5x^{2}+9=10
3-0.5x ರಿಂದು x+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
1.5x-0.5x^{2}=10-9
ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
1.5x-0.5x^{2}=1
1 ಪಡೆದುಕೊಳ್ಳಲು 10 ದಿಂದ 9 ಕಳೆಯಿರಿ.
-0.5x^{2}+1.5x=1
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-0.5x^{2}+1.5x}{-0.5}=\frac{1}{-0.5}
-2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+\frac{1.5}{-0.5}x=\frac{1}{-0.5}
-0.5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -0.5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-3x=\frac{1}{-0.5}
-0.5 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1.5 ಗುಣಿಸುವ ಮೂಲಕ -0.5 ದಿಂದ 1.5 ಭಾಗಿಸಿ.
x^{2}-3x=-2
-0.5 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1 ಗುಣಿಸುವ ಮೂಲಕ -0.5 ದಿಂದ 1 ಭಾಗಿಸಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=0.25
\frac{9}{4} ಗೆ -2 ಸೇರಿಸಿ.
\left(x-\frac{3}{2}\right)^{2}=0.25
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0.25}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2 x=1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.