ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+6x+9=\left(1-2x\right)^{2}
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9=1-4x+4x^{2}
\left(1-2x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9-1=-4x+4x^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}+6x+8=-4x+4x^{2}
8 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}+6x+8+4x=4x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
x^{2}+10x+8=4x^{2}
10x ಪಡೆದುಕೊಳ್ಳಲು 6x ಮತ್ತು 4x ಕೂಡಿಸಿ.
x^{2}+10x+8-4x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}+10x+8=0
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
a+b=10 ab=-3\times 8=-24
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -3x^{2}+ax+bx+8 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,24 -2,12 -3,8 -4,6
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=12 b=-2
ಪರಿಹಾರವು 10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-3x^{2}+12x\right)+\left(-2x+8\right)
\left(-3x^{2}+12x\right)+\left(-2x+8\right) ನ ಹಾಗೆ -3x^{2}+10x+8 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(-x+4\right)+2\left(-x+4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 3x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-x+4\right)\left(3x+2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -x+4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=4 x=-\frac{2}{3}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -x+4=0 ಮತ್ತು 3x+2=0 ಪರಿಹರಿಸಿ.
x^{2}+6x+9=\left(1-2x\right)^{2}
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9=1-4x+4x^{2}
\left(1-2x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9-1=-4x+4x^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}+6x+8=-4x+4x^{2}
8 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}+6x+8+4x=4x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
x^{2}+10x+8=4x^{2}
10x ಪಡೆದುಕೊಳ್ಳಲು 6x ಮತ್ತು 4x ಕೂಡಿಸಿ.
x^{2}+10x+8-4x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}+10x+8=0
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ 10 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\left(-3\right)\times 8}}{2\left(-3\right)}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+12\times 8}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100+96}}{2\left(-3\right)}
8 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{196}}{2\left(-3\right)}
96 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±14}{2\left(-3\right)}
196 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±14}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±14}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 14 ಗೆ -10 ಸೇರಿಸಿ.
x=-\frac{2}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{24}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±14}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 14 ಕಳೆಯಿರಿ.
x=4
-6 ದಿಂದ -24 ಭಾಗಿಸಿ.
x=-\frac{2}{3} x=4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+6x+9=\left(1-2x\right)^{2}
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9=1-4x+4x^{2}
\left(1-2x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+6x+9+4x=1+4x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
x^{2}+10x+9=1+4x^{2}
10x ಪಡೆದುಕೊಳ್ಳಲು 6x ಮತ್ತು 4x ಕೂಡಿಸಿ.
x^{2}+10x+9-4x^{2}=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
-3x^{2}+10x+9=1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
-3x^{2}+10x=1-9
ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
-3x^{2}+10x=-8
-8 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 9 ಕಳೆಯಿರಿ.
\frac{-3x^{2}+10x}{-3}=-\frac{8}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{10}{-3}x=-\frac{8}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{10}{3}x=-\frac{8}{-3}
-3 ದಿಂದ 10 ಭಾಗಿಸಿ.
x^{2}-\frac{10}{3}x=\frac{8}{3}
-3 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
-\frac{5}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{10}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{9} ಗೆ \frac{8}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{5}{3}\right)^{2}=\frac{49}{9}
ಅಪವರ್ತನ x^{2}-\frac{10}{3}x+\frac{25}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{3}=\frac{7}{3} x-\frac{5}{3}=-\frac{7}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4 x=-\frac{2}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{3} ಸೇರಿಸಿ.