ಮೌಲ್ಯಮಾಪನ
\left(x+\left(-1-3i\right)\right)\left(x+\left(-1+3i\right)\right)\left(x+1\right)^{2}
ವಿಸ್ತರಿಸು
x^{4}+7x^{2}+18x+10
ರಸಪ್ರಶ್ನೆ
Complex Number
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
( x + 1 ) ^ { 2 } ( x - ( 1 - 3 i ) ) ( x - ( 1 + 3 i ) )
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x-\left(1-3i\right) ದಿಂದ x^{2}+2x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x-\left(1+3i\right) ದಿಂದ x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1+3i\right) ದಿಂದ x^{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1-3i\right) ರಿಂದು x^{3}+\left(-1+3i\right)x^{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1+3i\right) ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1-3i\right) ರಿಂದು 2x^{2}+\left(-2+6i\right)x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
0 ಪಡೆದುಕೊಳ್ಳಲು -2x^{3} ಮತ್ತು 2x^{3} ಕೂಡಿಸಿ.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 10x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
x^{4}+6x^{2}+20x+x^{2}-2x+10
x+\left(-1-3i\right) ರಿಂದು x+\left(-1+3i\right) ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}+7x^{2}+20x-2x+10
7x^{2} ಪಡೆದುಕೊಳ್ಳಲು 6x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
x^{4}+7x^{2}+18x+10
18x ಪಡೆದುಕೊಳ್ಳಲು 20x ಮತ್ತು -2x ಕೂಡಿಸಿ.
\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x-\left(1-3i\right) ದಿಂದ x^{2}+2x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x-\left(1+3i\right) ದಿಂದ x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1+3i\right) ದಿಂದ x^{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1-3i\right) ರಿಂದು x^{3}+\left(-1+3i\right)x^{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1+3i\right) ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x+\left(-1-3i\right) ರಿಂದು 2x^{2}+\left(-2+6i\right)x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
0 ಪಡೆದುಕೊಳ್ಳಲು -2x^{3} ಮತ್ತು 2x^{3} ಕೂಡಿಸಿ.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 10x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1-3i ಗುಣಿಸಿ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
-1-3i ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 1+3i ಗುಣಿಸಿ.
x^{4}+6x^{2}+20x+x^{2}-2x+10
x+\left(-1-3i\right) ರಿಂದು x+\left(-1+3i\right) ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{4}+7x^{2}+20x-2x+10
7x^{2} ಪಡೆದುಕೊಳ್ಳಲು 6x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
x^{4}+7x^{2}+18x+10
18x ಪಡೆದುಕೊಳ್ಳಲು 20x ಮತ್ತು -2x ಕೂಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}